Zirconia Oxygen Analyzer

Low Temperature Version ZDT–FG Series

The Company

We are an established world force in the design and manufacture of instrumentation for industrial process control, flow measurement, gas and liquid analysis and environmental applications.

As a part of ABB, a world leader in process automation technology, we offer customers application expertise, service and support worldwide.

We are committed to teamwork, high quality manufacturing, advanced technology and unrivalled service and support.

The quality, accuracy and performance of the Company's products result from over 100 years experience, combined with a continuous program of innovative design and development to incorporate the latest technology.

The UKAS Calibration Laboratory No. 0255 is just one of the ten flow calibration plants operated by the Company and is indicative of our dedication to quality and accuracy.

Electrical Safety

This equipment complies with the requirements of CEI/IEC 61010-1:2001-2 "Safety requirements for electrical equipment for measurement, control, and laboratory use". If the equipment is used in a manner NOT specified by the Company, the protection provided by the equipment may be impaired.

Symbols

One or more of the following symbols may appear on the equipment labelling:

Â	Warning – Refer to the manual for instructions		Direct current supply only
Â	Caution – Risk of electric shock	\sim	Alternating current supply only
	Protective earth (ground) terminal	\sim	Both direct and alternating current supply
	Earth (ground) terminal		The equipment is protected through double insulation

Information in this manual is intended only to assist our customers in the efficient operation of our equipment. Use of this manual for any other purpose is specifically prohibited and its contents are not to be reproduced in full or part without prior approval of the Marketing Communications Department.

Health and Safety

To ensure that our products are safe and without risk to health, the following points must be noted:

- 1. The relevant sections of these instructions must be read carefully before proceeding.
- 2. Warning labels on containers and packages must be observed.
- 3. Installation, operation, maintenance and servicing must only be carried out by suitably trained personnel and in accordance with the information given.
- 4. Normal safety precautions must be taken to avoid the possibility of an accident occurring when operating in conditions of high pressure and/or temperature.
- 5. Chemicals must be stored away from heat, protected from temperature extremes and powders kept dry. Normal safe handling procedures must be used.

6. When disposing of chemicals ensure that no two chemicals are mixed.

Safety advice concerning the use of the equipment described in this manual or any relevant hazard data sheets (where applicable) may be obtained from the Company address on the back cover, together with servicing and spares information.

Cert. No. Q 05907

Lenno, Italy - Cert. No. 9/90A

Stonehouse, U.K.

CONTENTS

Sect	ion	Page
1	INTRO	DDUCTION2
2	PREP 2.1	ARATION
3	MECH 3.1 3.2 3.3	IANICAL INSTALLATION4Siting Requirements4Overall Dimensions5Mounting5
4	4.1 4.2 4.3 4.4 4.5	IECTIONS6Cable, Tubing and Gland Specifications6Electrical Connections64.2.1General64.2.2Access to Terminals74.2.3Connections74.2.4Relay Contact Protectionand Interference Suppression8Selecting the Mains Input Voltage8Replacing the Fuses9Reference Air Supply10
5	CONT 5.1 5.2	ROLS AND DISPLAYS 11 Displays 11 Switch Functions 11

Section

6	OPE	RATION	12
	6.1	Instrument Start-up	12
	6.2	Operating Page	12
	6.3	Operating Page Error Messages	13
7	PRO	GRAMMING	14
	7.1	Single-point Calibration	15
	7.2	Two-point Calibration	16
	7.3	Preset Calibration	18
	7.4	Access to Secure Parameters	19
	7.5	Language Selection Page	19
	7.6	Set Up Outputs Page	20
8	CAL	BRATION	
	8.1	Equipment Required	22
	8.2	Preparation	22
	8.3	Electrical Calibration Page	23
IND	EX		24

Page

1 INTRODUCTION

The ZDT Oxygen Analyzer is designed for continuous monitoring of oxygen content in applications using 'in situ' ZFG2 probes.

Operation and programming of the ZDT Analyzer is via four tactile membrane switches and a digital display located on the front of the instrument. Two I.e.d.'s on the front panel provide local alarm indication.

In operation, the instrument can display measured % oxygen, cell mV, cell temperature or probe heater output. Set up of alarm, retransmission and calibation parameters is achieved in programming mode, where key parameters are protected by a five-digit security code.

Measured $\%O_2$ values can be retransmitted to remote equipment using the retransmission output facility. The range of values retransmitted can be set anywhere within the instrument's display range of 0 to 25% O₂, subject to the limits in Section 7.6.

Remote alarm indication is provided by two relay outputs. Relays are programmed to activate when the oxygen level moves either above or below a pre-defined set point. The second alarm relay can also be used as a 'general alarm' which activates in the event of an instrument or system fault.

An optional internal reference air unit is used to provide reference air supply for the ZFG2 probe. If this unit is not specified, reference air must be supplied to the probe from an alternative source.

For full installation and operation details of the ZFG2 probe refer to the probe operating instructions, *IM/ZFG2*.

2 **PREPARATION**

2.1 Checking the Instrument Type – Fig. 2.1

ZDT Oxygen Analyzer	ZDT/	0	1	x	х
Probe Type	ZFG2	0			
Thermocouple Type	Туре К		1		
Reference Air Supply	None External Output Internal Output			0 1 2	
Mains Voltage	230V 50/60Hz 110V 50/60Hz				0 1

Table 2.1 Instrument Identification

3 MECHANICAL INSTALLATION

3.1 Siting Requirements – Fig. 3.1

The instrument is designed for wall mounting and weighs approximately 9kg (20lb).

Note. If the flexible conduit supplied with Z-FG2 probes is of insufficient length [6m (20ft.) standard, 10m (33ft.) optional], it can be extended using a suitable junction box (part no. 003000060) and cables selected from Table 4.1.

Alternatively, cables EXFG/0194 and EXFG/0195 can be used, up to a maximum of 100m (328ft.).

3.2 Overall Dimensions – Fig 3.2

3.3 Mounting – Fig. 3.3

4 CONNECTIONS

Warning.

• Mains power – before making any connections, ensure that the power supply, any powered control circuits and high common-mode voltages are switched off.

4.1 Cable, Tubing and Gland Specifications

Information.

- Five 22mm (0.87 in.) diameter cable entries are provided in the base of the terminal chamber. The cable entries accept M20 glands (not supplied).
- External reference air connections are made via 1/4 in. compression fittings.

Cable/Tubing Reference	Description				
Cell output cable	16/0.2mm laid up red and blue twin copper braid with overall p.v.c. sheath				
Thermocouple cable	See Table 4.2				
Heater cable	$\begin{array}{c} 3\text{-core 1mm}^2 \text{ copper (20m or 66ft. max.)}^* \\ 3\text{-core 1.5mm}^2 \text{ copper (32m or 105ft. max.)}^* \\ 3\text{-core 2mm}^2 \text{ copper (69m or 226 ft. max.)}^* \end{array} \right\} \qquad \begin{array}{c} \textbf{Caution. The total loop} \\ \text{resistance must be less} \\ \text{than } 2\Omega. \end{array}$				
Air Tubing (Reference Air)	$1/_{4}$ in. o.d. x $1/_{8}$ in. i.d. stainless steel, nylon or p.v.c. tube				

* Total run length, including flexible conduit

Table 4.1 Cable References and Air Tubing Specification

	Compensating Cable								
Type of Thermocouple	В	British 8S1843; 195	2	German DIN 43714		American ANSI IMC96.1			
	+	-	Case	+	-	Case	+	-	Case
Ni-Cr/Ni-Al (Type K)	Brown	Blue	Red	Red	Green	Green	Yellow	Red	Yellow

Table 4.2 Thermocouple Wiring

4.2 Electrical Connections

4.2.1 General

Information.

- Earthing (grounding) a stud terminal is fitted to the case bus-bar earth (ground) connection see Fig. 4.2
- **Cable routing** always route signal output cables and mains-carrying/relay cables separately, ideally in earthed metal conduit. Twist the signal output leads together or use screened cable with the screen connected to the case earth stud.

Use only the cables and air tubing specified in Table 4.1.

Fit suitable cable glands into the entries to be used and blank-off any unused entries using the bungs supplied.

Ensure that the cables enter the instrument through the glands nearest the appropriate screw terminals and are short and direct. Do not tuck excess cable into the terminal compartment.

• **Relays** – the relay contacts are voltage-free and must be connected in series with a power supply and the alarm/control device which they are to actuate. Ensure that the contact rating is not exceeded.

Refer also to Section 4.2.4 for relay contact protection details when the relays are to be used for switching loads.

 Retransmission output – Do not exceed the maximum load specification for the selected current retransmission range (see the associated specification sheet, SS/ZDT/FG).

The retransmission output is isolated. Therefore the –ve terminal must be connected to earth (ground) if connecting to the isolated input of another device.

...4 CONNECTIONS

4.2.4 Relay Contact Protection and Interference Suppression – Fig. 4.3

To reduce the risk of instrument malfunction or incorrect readings when switching inductive loads, suppression components must be fitted across the relay contacts.

For a.c. applications, fit a $100R/0.022\mu$ F RC suppressor unit (part no. B9303) as shown in Fig. 4.3A. If the instrument malfunctions (incorrect readings) or resets (display shows '88888') when the relays operate, a larger RC network is required. Contact the manufacturer of the switched device for details of the RC unit required.

For d.c. applications fit a diode – see Fig. 4.3B. For general applications use a 1N5406 type (600V peak inverse voltage at 3A – part no. B7363).

Note. For reliable switching the minimum voltage must be greater than 12V and the minimum current greater than 100mA.

4.3 Selecting the Mains Input Voltage – Fig. 4.4

Input voltages (230V or 110V) for the main analyzer p.c.b. and the probe heater supply p.c.b. are selected by two switches located on their respective p.c.b.'s.

4 CONNECTIONS...

4.4 Replacing the Fuses – Fig. 4.5

The instrument is protected by two fuses located on the probe heater supply p.c.b. In order to replace the fuses, the main analyzer p.c.b. must be removed for access as shown.

...CONNECTIONS

4.5 Reference Air Supply – Fig. 4.6

ZDT Analyzer Code Number	Reference Air Supply	Compatible Oxygen Probes
ZDT/01 0 X No reference air supply.	Reference air to the probe must be provided from a separate source – Refer to the installation and operating instructions supplied with the probe.	Either code listed below, providing the reference air to the probe is supplied from an external source.
ZDT/011X Reference air supply with external connection.	For use with probes fitted with an external reference air input – see Fig 4.6B	ZFG2/XXXXXX 2 X
ZDT/01 2 X Reference air supply with internal connection.	For use with probes fitted with an internal reference input – see Fig 4.6A	ZFG2/XXXXXX1X

Table 4.3 Analyzer and Probe Compatibility

Information. The location of the Analyzer code number is shown in Fig. 2.1. Refer to the probe's operating instructions, *IM*/*ZFG2* for information on locating the code number of the probe.

Fig. 4.6 Reference Air Connections

5 CONTROLS AND DISPLAYS

5.1 Displays – Fig. 5.1

The display comprises a 5-digit, 7-segment digital upper display line and a 16-character dot-matrix lower display line. In operation, the upper display line shows actual values of % oxygen, temperature, cell millivolts or alarm set points. In programming mode it is used to display programmable parameters. The lower display line shows the associated units and/or other programming information.

5.2 Switch Functions – Fig. 5.2

6 OPERATION

6.1 Instrument Start-up

Ensure all electrical connections have been made correctly and apply power to the instrument.

6.2 Operating Page

The operating page is a general use page in which continuously updated measured values and preset parameters can be viewed but not altered. To adjust or set a parameter refer to the programming pages in Section 7.

Note. If Alarm 2 has been programmed as a general system/instrument alarm, the associated front panel l.e.d. is illuminated when the alarm is active and Relay 2 has de-energized.

6.3 Operating Page Error Messages When an error has been detected, the following error messages appear in the Operating Page, in place of the % oxygen display.

Error Message	Possible Cause
NV MEMORY ERROR	The contents of the non-volatile memory have not been read correctly during power up. To rectify the fault, switch off, wait 10 seconds and switch on again. If the fault persists contact the Company.
CELL WARMING UP	The temperature in the probe oven has not reached a sufficient temperature to obtain suitable readings (<690°C).
CELL STABILIZING	After the cell temperature reaches 690°C, a delay of five minutes is allowed for the cell output to stabilize.
CALIBRATION FAIL	The last single- or two-point calibration failed.
T/C OPEN CIRCUIT	The thermocouple connections are open circuit or the thermocouple temperature is > 1000°C.

7 PROGRAMMING

Note. Before commencing a gas calibration procedure the analyzer and probe must be switched on and allowed to operate for at least one hour to allow the system to stabilize thermally.

7.1 Single-point Calibration

The calibration sequence involves standardizing the analyzer and the oxygen probe, using air as the test gas. Until a calibration sequence has been completed successfully, the existing slope remains unaffected.

...7 PROGRAMMING

7.2 Two-point Calibration

7 PROGRAMMING...

...7.2 Two-point Calibration

Calibrating Span

The upper display indicates measured % oxygen. The display advances automatically to the next frame when a stable reading is detected. To abort calibration, press either the **1** or **s** switch to advance to the next frame.

Calibration Pass/Fail

n completion a calibration statu	us message is displayed.
Calibration Pass	Calibration sequence successful
Failed Constant	Cell offset >±10mV
	(upper display shows cell constant)
Failed Span %	Cell output <90% or >110% of slope
	(upper display shows measured slope)
Failed Unstable	Cell output unstable (drifting).

Note. If sensor calibration is unsuccessful then the 'Cell Zero mV' and 'Span % of Theory' parameters are unaffected. The instrument continues to operate using parameters stored during the last successful calibration.

Press 1 to return to the top of the Oxygen Calibration Page.

Press **p** to advance to the **Secure Parameters Page**.

...7 PROGRAMMING

7.3 Preset Calibration

7.4 Access to Secure Parameters

A 5-digit security code is used to prevent tampering with the secure parameters.

7.5 Language Selection Page

....7 PROGRAMMING

7.6 Set Up Outputs Page

Set Up Outputs

Alarm A1 Action

Select the required alarm action from the following table:

Alarm Action	LED A	Action	Relay Action			
	Input Above Set Point	Input Below Set Point	Input Above Set Point	Input Below Set Point		
EB	ON	OFF	DE-ENERGIZED	ENERGIZED		
EA	OFF	ON	ENERGIZED	DE-ENERGIZED		

The set point band is defined as the actual value of the Set Point plus or minus the hysteresis value. The hysteresis value is fixed at 0.1% of set point. Alarm action occurs if the input value is above or below the Set Point band. If the input moves within the Set Point band the last alarm action is maintained.

Alarm 1 Set Point

The alarm set point can be set to any value within the oxygen range. [0.00% to 25.00%]

Alarm A2 Action

Set the required alarm action from the above table.

If the alarm action is set to General Alarm, the relay is de-energized and the associated front panel l.e.d. is illuminated when one or more of the following conditions applies: thermocouple open circuit, cell warming up, calibration fail, cell stability check, power failure.

Alarm A2 Set Point

The alarm set point can be set to any value within the oxygen range of 0.3% to 25.0%.

Note. This frame is not displayed if the 'Alarm 2 Action' parameter has been set to General Alarm.

Retransmission Type

The retransmission output is assigned to the oxygen range. Select the retransmission output current range required (4 to 20mA, 0 to 20mA or 0 to 10mA).

Logarithmic or Linear Output

The retransmission can be assigned to give a logarithmic or linear output. Select the output required:

- YES Logarithmic
- ΝO Linear _

Continued on next page

...7.6 Set Up Outputs Page

Continued from previous page

8 CALIBRATION

Note. Electrical calibration is carried out prior to despatch and further calibration is not normally necessary. However, if inaccurate or inconsistent readings are obtained, follow the procedures detailed in this Section.

8.1 Equipment Required

- a) Millivolt source (cell input simulator), -20.0 to 180.0mV.
- b) Millivolt source (temperature input simulator), 10.0 to 40.0mV.
- c) Digital voltmeter (current output), 0 to 20mA.
- d) 'Mercury-in-glass' Thermometer, to measure ambient temperature.

8.2 Preparation

- a) Switch off the mains supply. Disconnect the probe and retransmission output terminations from the instrument see Fig. 4.2.
- b) Connect the millivolt sources and the milliammeter to the appropriate terminals see Fig. 8.1.
- c) With all covers fitted, switch on the mains supply to the instrument and allow ten minutes for the circuits to stabilize.
- d) Select the Electrical Calibration Page and proceed as detailed in Section 8.3, following.

8.3 Electrical Calibration Page In this section the actual values denoted by X X X X X are not important and should only be used to determine display reading stability.

· · · · · · · · · · · · · · · · ·	Electrical Calibration Page
ELECTRICAL CAL.	
Calibrate NO YES V	Calibrate — Select YES to access the electrical calibration sequence. Select N0 to advance to the Adjust RTX Zero parameter below.
××××× mV Zero 1 -20mV	mV Zero 1 Set the Cell simulator millivolt source to -20mV and allow the display to stabilize.
XXXXX mV Span 1 180mV	mV Span 1 Set the Cell simulator millivolt source to 180mV and allow the display to stabilize.
X X X X X mV Zero 2 10mV	mV Zero 2 Set the Temperature simulator millivolt source to 10mV and allow the display to stabilize.
XXXXX mV Span 2 40mV	mV Span 2 Set the Temperature simulator millivolt source to 40mV and allow the display to stabilize.
Image: Second state Adjust CJ Value	Adjust Cold Junction Value — Set the measured ambient temperature in °C
Adjust RTX Zero	Adjust RTX Zero — Set the milliammeter reading to the minimum retransmission level determined by the Retransmission Type setting – see Section 7.6. For example, when the Retransmission Type is set to 4–20, adjust the milliammeter reading to 4mA.
Adjust RTX Span	Adjust RTX Span — Set the milliammeter reading to the maximum retransmission level determined by the Retransmission Type setting – see Section 7.6. For example, when the Retransmission Type is set to 4–20, adjust the milliammeter reading to 20mA.
	Press 1 to return to the top of the Electrical Calibration Page.
Operating Page	Press 🗊 to advance to the Operating Page.

INDEX

Α

Alarms 2	2, 12,	20
Analyzer and Probe Compatibility		10

С

Cables6
Calibration
Electrical – See Electrical Calibration
Oxygen – See Oxygen Calibration
Checking the Instrument Code
Connections
Controls

D

Displays	11
Language Selection	19
Measured %02	12

Е

Electrical Calibration	
Connections	
Displays	

Equipment Required	
Electrical Connections	6, 7
Error Messages	

F

Fault Finding – <i>See</i> Error Messages Fuses	9
H Heater Output	2, 6, 12, 13
Interference Suppression	

L

Μ

Mechanical Installation	4
Membrane Switches	2, 11
Mounting	5

Ο

Operating Displays			12
Outputs – See Retransmission Output			
Overall Dimensions			5
Oxygen Calibration			15
Fail	13,	15,	17
Preset			18
Single-point			15
Two-point			16
User Code	15,	16,	18

P

Programming Overview	······································	14
----------------------	--	----

R

Reference Air	
Connections	
Supply	
Relays – <i>See also</i> Alarms	
Connections	
Contact Protection	
Retransmission Output	

S

Schematic Diagram	2
Security Code	19, 21
Siting	4
Specification	
Air Tubing	6
Cables	6
Start-up	12

Т

Terminals – Access			7
Thermocouple	7,	13,	20

V

Voltage Selection	
-------------------	--

PRODUCTS & CUSTOMER SUPPORT

Products Automation Systems

- for the following industries:
 - Chemical & Pharmaceutical
 - Food & Beverage
 - Manufacturing
 - Metals and Minerals
 - Oil, Gas & Petrochemical
 - Pulp and Paper

Drives and Motors

- AC and DC Drives, AC and DC Machines, AC motors to 1kV
- Drive systems
- Force Measurement
- Servo Drives

Controllers & Recorders

- Single and Multi-loop Controllers
- Circular Chart , Strip Chart and Paperless Recorders
- Paperless Recorders
- Process Indicators

Flexible Automation

• Industrial Robots and Robot Systems

Flow Measurement

- Electromagnetic Flowmeters
- Mass Flow Meters
- Turbine Flowmeters
- Flow Elements

Marine Systems & Turbochargers

- Electrical Systems
- Marine Equipment
- Offshore Retrofit and Refurbishment

Process Analytics

- Process Gas Analysis
- Systems Integration

Transmitters

- Pressure
- Temperature
- Level
- Interface Modules

Valves, Actuators and Positioners

- Control Valves
- Actuators
- Positioners

Water, Gas & Industrial Analytics Instrumentation

- pH, conductivity, and dissolved oxygen transmitters and sensors
- ammonia, nitrate, phosphate, silica, sodium, chloride, fluoride, dissolved oxygen and hydrazine analyzers.
- Zirconia oxygen analyzers, katharometers, hydrogen purity and purge-gas monitors, thermal conductivity.

Customer Support

We provide a comprehensive after sales service via a Worldwide Service Organization. Contact one of the following offices for details on your nearest Service and Repair Centre.

United Kingdom

ABB Limited Tel: +44 (0)1453 826661 Fax: +44 (0)1453 829671

United States of America

ABB Inc. Tel: +1 775 850 4800 Fax: +1 775 850 4808

Client Warranty

Prior to installation, the equipment referred to in this manual must be stored in a clean, dry environment, in accordance with the Company's published specification.

Periodic checks must be made on the equipment's condition. In the event of a failure under warranty, the following documentation must be provided as substantiation:

- 1. A listing evidencing process operation and alarm logs at time of failure.
- 2. Copies of all storage, installation, operating and maintenance records relating to the alleged faulty unit.

ABB has Sales & Customer Support expertise in over 100 countries worldwide

www.abb.com

The Company's policy is one of continuous product improvement and the right is reserved to modify the information contained herein without notice.

> Printed in UK (07.05) © ABB 2005

ABB Limited Oldends Lane, Stonehouse Gloucestershire GL10 3TA UK

Tel: +44 (0)1453 826661 Fax: +44 (0)1453 829671

ABB Inc.

Analytical Instruments 9716 S. Virginia St., Ste. E Reno Nevada 89521 USA Tel: +1 775 850 4800 Fax: +1 775 850 4808