Main Catalogue
R.. Series Contactors R1400, R1700, R2100

ABB

AR R.. Series Contactors

Presentation - Overview

Contactors

"Long-lasting operation for

R.. Series

Control of power circuits

The R.. series contactors are largely used for industry applications,

demanding applications"

Contactors

and motors in a.c. and d.c.

R.. Series Contactors

Contactors

Specific Contactors

a.c./d.c. Switching Mechanical Latching

d.c. - supply via an economy resistor 1400 ... 2100 A IORE..-AME 2/15

Contactors and Specific Application

Conformity with Standards

The standards and specifications cited for different types of devices, e.g. IEC, BS, VDE, NFC, EN Publications, should be considered as statements of conformity in the sense of article 10 of the E.E.C. Low Voltage Directive of 19 February 1973.

There is no label on ABB Low Voltage Control Apparatus identifying a national certification organization. The ABB logo figuring on devices, labels and documents certifies the conformity of devices with respect to the applicable standards.
CE marking is proof of conformity with the European Directives concerning the product. It must not be confused with a mark of quality.

CE marking is part of an administrative procedure designed to guarantee the free movement of the product inside the European Community.

Industrial $^{\text {IT }}$

As a key element of its business strategy, ABB has committed to a broad program of product development and positioning under the Industrial ${ }^{1 T}$ umbrella.

Most of the Low Voltage Products have already been Industrial ${ }^{1 T}$ enabled by the designation of Control ${ }^{1 T}$.

Liability

The devices in this catalogue do not endanger safety when they are installed, mounted and used according to their application and in compliance with the installation rules and standards which apply to them

Quality

ABB has set up a quality assurance organisation in compliance with the requirements of ISO 9001 standard.
ABB factories are ISO 9001 approved.
ABB Low Voltage Control Apparatus meet with a high quality standard. It is developed, manufactured and tested under the sole responsibility of ABB. Our test platforms benefit from a quality assurance organisation accredited as per standard ISO/IEC 17025.
In compliance with the regulations set out by the ISO 9000 series standard, ABB sets up and manages the procedures and files relating to product quality and actions having an effect on quality.

Guarantee

The information contained in this catalogue reflects the current state of our knowledge and aims to present our products and their possible applications. Thus, the information does not guarantee certain specific characteristics of products or their aptitude for a specific utilization. All filed legal patents or industrial property rights must be respected.

Sustainable Development

In 1999, ABB extended its Environment Management Programme to all the principles of the Corporate Charter for Sustainable Development. All concerned factories are ISO 14001 certified.

Eco-design
Some environmental information is accessible on ABB Website.
see www.abb.com/sustainability select in left menu: "ABB's environmental policy".
Environmental product declarations can be issued upon customer's request.

Packing
Generally speaking, the diversification of reusable packing satisfies ecological requirements and the specific needs of our customers.
Packing is designed and produced with a continuous concern for respect of the environment.
For instance, polystyrene packing materials are replaced by recyclable
ISO 14001 wrapping materials with an efficient protection of our products during their transportation.

R.. Series Contactors

Application

R.. series contactors, and variants described in this catalogue, are used for controlling motors, and generally for controlling power circuits, up to 500/1000 V a.c. or 600/1000/1500 V d.c.
The R.. series contactors can be used, and adapted, for many industrial applications with high performances and severe operating conditions. see "Overview", page 1/9

Presentation

R.. series contactors, and variants (couplers, contactors for specific applications, ...) are designed with common standard components. see "Construction", page 1/8 and "Description", pages 2/3 ... 2/5.
With the combination of these elements, and the adaptation possibilities, special versions can be provided.
Based on a simple and sturdy construction this type of contactor is suitable for intensive duty and a high number of operations. All component parts are easily accessible and removable from the front.

3-pole contactor, 1700 A rating

R.. Series Contactors

Construction

For the ratings 1400 to 2100 A each contactor comprises of:

The frame

- 1 main frame
- 1 auxiliary frame

The main poles

They are defined by:

- the rated operational voltage \mathbf{U}_{e}
- their number, according to the power circuit
- their N.O. function

The auxiliary contacts

All \mathbf{R} series contactors have 1 N.O. auxiliary contact and 1 N.C. auxiliary contact fitted as standard
(except AME mechanically latched version).
On request, all contactors can be provided with extra auxiliary contacts. See "Auxiliary Contact Allocation", page 2/7
The electro-magnet
1 electro-magnet (2 electro-magnets if necessary) for a.c. operation or d.c. operation.
Different types of electro-magnets and their variants are proposed below.

Supply	Utilization	Electro-magnet characteristics				Electro-magnet (standard) Type	Electro-magnet with mechanical latching: Type
Source		Magnetic circuit	Coil	Economy resistor	Rectifier		
	$50 . .400 \mathrm{~Hz}$	Laminated	$\stackrel{1}{\square}$	yes	yes	RR	RR..-AME
\sim	High closing power of the contactor. Fluctuating supply.						
=-	-	Laminated	+	yes	-	RE	RE..-AME

Symbols (for details, see page 2/2)

Description	Power circuit	Main poles Operational Function voltage \mathbf{U}_{e}	Control circuit supply d.c. coil supply via a rectifier	Control circuit supply d.c. coil + economy resistor
Contactor	\sim	500 V a.c. N.O.	IORR..	IORE..
		1000 V a.c. N.O.	IORR..-MT	IORE..-MT
	$=-$	600 Vd.c. N.O.	IORR..-CC	IORE..-CC
		1000 Vd.c. N.O.	IORR..-CC	IORE..-CC
		1500 V d.c.. N.O.	IORR..-CC	IORE..-CC

Contactors for specific applications:

- AM-CC.. Specific contactor for field discharge of synchronous machines (please consult us)
- FOR.. Specific contactor for control of slip-ring motors (see page 2/28)
- LOR.. Specific contactor for a.c. / d.c. coupling

[^0]
R series contactors with variable number of poles

Alternating current U_{e} max. $=500 \mathrm{~V}$ a.c.

Alternating current U_{e} max. $=1000 \mathrm{~V}$ a.c.

Power Control	$\begin{gathered} \text { C-3, } 690 \text { V } \\ \text { Coil supply } \end{gathered}$	Type	780 kW	1000 kW	1200 kW	1300 kW	-
	Direct	IOR..-MT	R 800-MT	-	-	-	-
\sim	Via a rectifier	IORR..-MT	RR 800-MT	RR 1400-MT	RR 1700-MT	RR 2100-MT	RR..-MT
	Via an economy resistor	IORE..-MT	RE 800-MT	RE 1400-MT	RE 1700-MT	RE 2100-MT	RE..-MT
	Direct	IORC..-MT	RC 800-MT	-	-	-	-
Current	-3, 690 V	A	800	970	1170	1270	-
	1000 V	A	580	610	680	810	-
Current ${ }^{\text {A }}$	-1, $40{ }^{\circ} \mathrm{C}$	A	800	1250	1650	2000	> 1850 on request

Direct current U_{e} max. $=1500 \mathrm{~V}$ d.c.

$\begin{aligned} & \text { Power DC-3, DC-5, } 1000 \text { V } \\ & \begin{array}{l} \text { Control } \\ \text { circuit } \end{array} \quad \text { Coil supply } \end{aligned}$	Type	720 kW	1000 kW	1250 kW	1600 kW	2000 kW	-
Direct	IOR..-CC	R 800-CC	R 1000-CC	-	-	-	-
\sim Via a rectifier	IORR..-CC	RR 800-CC	RR 1000-CC	RR 1400-CC	RR 1700-CC	RR 2100-CC	RR..-CC
Via an economy resistor	IORE..-CC	RE 800-CC	RE 1000-CC	RE 1400-CC	RE 1700-CC	RE 2100-CC	RE..-CC
Direct	IORC..-CC	RC 800-CC	-	-	-	-	-
Current DC-3, DC-5, $1000 \mathrm{~V}, 2$ poles in series	A	720	1000	1250	1600	2000	> 2000 on request
$1500 \mathrm{~V}, 3$ poles in series	A	720	1000	1250	1600	2000	> 2000 on request
Current DC-1, $750 \mathrm{~V}, 1$ pole	A	800	1000	1250	1600	2000	> 2000 on request
$1000 \mathrm{~V}, 2$ poles in series	A	800	1000	1250	1600	2000	> 2000 on request

Variants and accessories

- LOR couplers and contactors for specific applications
- CA 15 standard auxiliary contacts
- TP timed auxiliary contacts
- VM interlock
- AME mechanical latching

R.. Series Contactors

Codes for Completing Order Codes

Coil Voltage Code
$\mathbf{U}_{\mathbf{c}}$ voltage acc. to the electro-magnet type.

RR RR..-AME $50-60 \mathrm{~Hz}$	Code	RE RE..-AME
V a.c.	$\mathbf{R} \square . . \square$	V d.c.
24	01	24
-	14	30
32	15	-
-	16	36
42	02	42
48	17	48
-	03	60
60	19	-
-	20	75
100	22	-
110-115	04	110
120	23	120
-	05	125-130
127	24	-
-	27	185
200	28	-
210	45	-
220-230	06	220
-	46	230
230-240	29	240
250	40	250
380-400	07	380
400	39	400
400-415	34	-
440	35	440
500	08	500
$550{ }^{(1)}$	36	550
$600{ }^{(2)}$	37	600

Note: In the cases below, select an other coil according to the indicated values for U_{c} voltage.
(1) RR 1400 to RR 2100: 550 V max.

RR 1400..-MT to RR $2100 . .-$-MT: 550 V max.
RR 1400..-CC to RR 2100..-CC: 550 V max.
(2) Please consult us.

Code for Extra Auxiliary Contacts
Number of CA 15.. contacts and TP.. timers, according to the electro-magnet type.

RR, RE 1400 A ... 2100 A ratings RR..-AME, RE..-AME			Code
TP	$\begin{aligned} & \text { CA15F } \\ & \text { NO } \end{aligned}$	$\begin{gathered} \text { CA150 } \\ \text { NC } \end{gathered}$	R. $\square \square$.
-	-	-	00
-	-	1	01
-	-	2	02
-	-	3	03
-	-	4	04
-	1	-	10
-	1	1	11
-	1	2	12
-	2	-	20
-	2	1	21
-	2	2	22
-	3	-	30
-	3	1	31
-	3	2	32
-	3	3	33
-	4	-	40
-	4	1	41
-	4	2	42
-	4	3	43
-	5	-	50
-	5	1	51
-	6	-	60
1	-	-	61
1	-	1	62
1	-	2	63
1	-	3	64
1	1	-	65
1	2	-	66
1	3	-	67
1	4	-	68
1	5	-	69
1	1	1	71
1	1	2	72
1	1	3	73
1	2	1	75
1	2	2	76
1	2	3	77
1	2	4	78
1	3	1	80
1	3	2	81
1	3	3	82
1	4	1	86
1	4	2	87
1	5	1	91
1	6	-	96

The above tables indicate the main auxiliary contact combinations.
For other combinations, please consult us.
F fixing dimension can change according to the number of CA 15.. auxiliary contacts. See section 5 "Dimensions".

R.. Series Contactors

Complementary Information

Ordering Details

When placing an order please specify the Type and the Order Code (see "Ordering Details" pages in this catalogue).
In the "Order codes" complete the boxes \square by the codes indicated in the opposite tables.
Example: IORR 1400-30 contactor - 500 V a.c. circuit switching.
The "Order Code" is indicated in the "Ordering Details" table (for this example see page 2/8).
It must be completed by different codes:

- current frequency for the coil supply: example $50 / 60 \mathrm{~Hz}$
- operating coil voltage: example 230-240 V
- extra auxiliary contacts, factory mounted (see pages 2/6, 2/7), in this example: +2 N.C. and + 2 N.O.

Order Code to be completed: see page 2/8

R.. Series Contactors
Contents
Explanation of Symbols. 2/2
Description 2/3 to 2/5
Auxiliary Contact Allocation 2/6, 2/7
Ordering Details
Contactors for Operational Voltages up to 500 V a.c.
IORR 2/8
IORE 2/9
Contactors for Operational Voltages up to 1000 V a.c.
IORR..-MT 2/10
IORE..-MT. 2/11
Contactors for Operational Voltages up to 1000 V d.c. IORR..-CC, IORE..-CC 2/12
Contactors for Operational Voltages up to 1500 V d.c. IORR..-CC, IORE..-CC 2/13
Mechanically Latched Contactors
IORR..-AME, IORE..-AME. 2/14 to 2/16
Technical Data
Contactors for Operational Voltages up to 500 V a.c.IORR, IORE2/17 to 2/19
Contactors for Operational Voltages up to 1000 V a.c. IORR..-MT, IORE..-MT 2/20 to 2/22
Contactors for Operational Voltages up to $1000 / 1500$ V d.c. IORR..-CC, IORE..-CC 2/23 to 2/25
Standard Aux. Contacts: CA15-.. - Timed Aux. Contacts: TP. 2/26
Specific Applications
Star-Delta Starting with Closed-Transition of Three-Phase Asynchronous Motors 2/27
Control of Three-Phase Slip-Ring Motors. 2/28
Questionnaire: Specifications for R.. Series Contactors 2/29, 2/30

R.. Series Contactors
 Symbols

Explanation of symbols

IORE 1400-40-MT 125 Vd.c. coil + 1 CA 15-F + 1 CA 15-0
Open type bar mounted contactor with RE type electro-magnet and laminated magnetic circuit for d.c. operation via an economy resistor, 1400 A rating, 4 N.O. main poles, without N.C. pole, -MT version for max. operating voltage 1000 V a.c., 125 V d.c. coil, + one extra CA 15-F (N.O.) and one extra CA 15-O. (N.C.) auxiliary contacts.

[^1]- Contactor rating must be specified when the TP.. timing block and the CA 15.. auxiliary contacts are ordered separately.

R.. Series Contactors
 Main Frame and Electro-magnet Description

Frame for contactor ratings 800 A and above

The \mathbf{R} series contactors are built on a main frame supporting the electro-magnet, the main poles and the auxiliary contacts.
This design offers a great construction flexibility for the standard contactors as well as for the tailor made versions:

- variable number of poles acc. to requirements
- poles without or with blow-out coils, rated for the current flow in the poles
- large number of standard, timed, adjustable N.O. and N.C. auxiliary contacts
- electro-magnets with specific features depending on both the control voltage supply and the utilization characteristics.
All component parts are easily accessible and removable from the front.

Main Frame

The main frame comprises of two fixed bar equipped with two supports c/w two bearings and the moving shaft rotating between the two bearings.
In addition to the main frame, contactor ratings 800 A and above, are equipped with an auxiliary frame on which can be mounted some or all of the auxiliary contacts.

Electro-magnet

The electro-magnet comprises of the magnetic circuit plus the operating coil.
Generally placed on the R.H.S of the frame, the electro-magnet can be, on request, placed either on the frame centre or on the L.H.S of the frame. If required and depending on the application or the contactor construction involved, an additional electro-magnet can be mounted on the frame.
The choice of the electro-magnet depends primarily on the type of control circuit supply available as well as on the composition of the contactor and its intended application.
a.c. Control Circuit Supply

- RR type electro-magnet

The magnetic circuit is laminated and the operating coil fed from an a.c. supply via a rectifier and an economy resistor mounted and pre-wired on the contactor.
This type of electro-magnet provides a high closing power for the operation of the large size contactors fitted with a large number of poles or when the control supply frequency is $>50 \mathrm{~Hz}$ and $<400 \mathrm{~Hz}$.
d.c. Control Circuit Supply

- RE type electro-magnet

The magnetic circuit is laminated and the operating coil fed from a d.c. supply via an economy resistor mounted and pre-wired on the contactor.

Alternative Versions

Electro-magnet with latching: the coil is briefly energized on contactor "latching" and "delatching".
RR.. or RE..-AME types: mechanically latched.

R.. Series Contactors
 Main Pole Description

De-ion arc chute

Main pole with arc chute

Main Poles

The main poles of the \mathbf{R} series contactors are of a "butt-contact" pattern without sliding or rolling. Each pole comprises of the main contacts (fixed contact and moving contact), the blow-out coil and the arc chute.

Main Contacts

The main contacts are made of a silver alloy insert brazed on to a hard copper support. The fixed contact is mounted on an insulated support screwed onto the fixed bar, the moving contact is similarly mounted and rotates directly with the moving shaft
The contact pressure and the contact compression stroke are set separately.
The fixed and moving contacts also have arcing horns fitted to assist with the elongation and breaking of the electric arc.

Blow-out Coil -CC and -MT poles

The total current flows through the blow-out coil. The coil generated flux is transmited to the internal faces of the arc chutes via a magnetic core.

Arc Chute

The arc chute is made of a polymer material and fiber-glass compound.
Whatever the operation voltage may be, the poles of contactor ratings 1400 A, 1700 A and 2100 A are equipped with arc chutes comprising of built-in de-ion arc splitters which ensure a rapid extinction of the arcs.
Quick and easy removal of the arc chutes allows an instant inspection of the main contacts and where necessary their replacement.

>> Accessories page 2/7	>> Terminal Marking and Positioningpage 4/2
>> Ordering Details...................... pages 2/8 ... 2/16	>> Wiring Diagrams........................pages 4/3 ... 4/4
>> Technical Data pages 2/17 ... 2/26	>> Dimensions ... section 5

R.. Series Contactors
 Main Pole Variants
 Auxiliary Contact Description

LOR coupler main pole

Main Pole Variants (on request)

- LOR.. couplers: Please consult us

The main poles have no blow-out devices and no arc chutes. Nevertheless the poles have the same making and breaking capacity as the contactors of equivalent rating but the breaking capacity characteristics are restricted to max. 24 V a.c./d.c. power circuits.

- Contactor ratings from 1400 A and above with boosted blow-out device ("long pole version").
- Increased insulation can be provided on request: ratings 1400 A and above, with insulated protective coating of metal parts, and increased clearance between poles.

Auxiliary Contacts

Standard Auxiliary Contacts

One type available and suitable for a.c. and d.c. control circuit switching.

- CA 15-.. 1-pole adjustable auxiliary contacts: $I_{t h}=15$ A
$\begin{array}{ll}\text { N.O. contact } & \text { CA 15-F } \\ \text { N.C. contact } & \text { CA 15-O }\end{array}$
CA 15-.. auxiliary contacts are mounted first on the auxiliary frame directly above the electromagnet and then on the contactor main frame to the R.H.S. of the electro-magnet.

Timed Auxiliary Contacts

TP.. pneumatic timing block with 1N.O. and 1N.C. electrically independent contacts, $\mathbf{I}_{\mathrm{th}}=10 \mathbf{A}$ Direct or inverse timing, with linear setting scale over a 350° rotation by means of a knurled knob with timing guide marks. Timing ranges from 0.1 to 40 s or from 10 to 180 s.
The TP.. timing block is mounted on the auxiliary frame and takes up space of three CA 15. auxiliary contacts.

>> Accessories .. page 2/7	>> Terminal Marking and Positioningpage 4/2
>> Ordering Details...................... pages 2/8 ... 2/16	>> Wiring Diagrams........................pages 4/3 ... 4/4
>> Technical Data pages 2/17 ... 2/26	>> Dimensions ..section 5

A焦

R.. Series Contactors

CA.. Auxiliary Contacts and TP.. Timing Blocks

CA 15-O (N.C.)

CA 15-F (N.O.)

TP 40 DA

Auxiliary Contacts Fitted as Standard

\mathbf{R} series contactors are equipped as standard (except AME types) with 1N.O. auxiliary contact generally used for "hold-in" plus 1 N.C. adjustable auxiliary contact (except AME types) generally used for electrical interlocking or signal contact.
Contact types available: see opposite page.

Extra Auxiliary Contacts, without Increase of Fixing Dimension "F"

On request \mathbf{R} series contactors can be equipped with extra CA.. auxiliary contacts and TP.. timed auxiliary contacts according to the indications given on the opposite page.

- CA 15-.. 1-pole adjustable auxiliary contacts:
N.O. contact
CA 15-F
N.C. contact
CA 15-O
- TP.. 2-pole pneumatic timing block with 1N.O. and 1N.C. auxiliary contacts.

On ordering please quote:

- timing mode, inverse or direct
- timing range, $0.1 \ldots 40 \mathrm{~s}$ or $10 \ldots 180 \mathrm{~s}$

Enter into the contactor FPL... Order Code, the appropriate two digit code according to the selected auxiliary contact combination.

Extra Auxiliary Contacts, with Increased Fixing Dimension "F"

On request \mathbf{R} series contactors can be equipped with a larger number of factory assembled auxiliary contacts but the contactor basic fixing dimension must be increased.
For example 15 (or more) extra CA 15.. auxiliary contacts together with 1 TP.. timing block may be added:

- CA 15.. 1-pole adjustable auxiliary contacts:

N.O. contact	CA 15-F	please quote "qty" required
N.C. contact	CA 15-O	please quote "qty" required

- TP.. 2-pole pneumatic timing blocks with 1 N.O. and 1 N.C. auxiliary contacts.

On ordering please quote:

- timing mode, inverse or direct
- timing range, $0.1 \ldots 40 \mathrm{~s}$ or $10 \ldots 180 \mathrm{~s}$.

R.. Series Contactors

CA.. Standard Auxiliary Contacts and TP.. Timing Block

Auxiliary Contact Allocation

Contactor	Rating		Aux. contacts available				Extra CA.. standard aux. contacts and TP.. timed aux. contacts Type	A

IORR.. Contactors - Poles 500 V a.c.

a.c. Operated

Application - Description

IORR.. contactors are used for controlling a.c. power circuits up to $500 \mathbf{V}, 50 / 60 \mathrm{~Hz}$.
The contactor magnetic circuit is of the laminated type and the operating coil is fed from an a.c. supply via a rectifier and an economy resistor.
On 3-pole + Neutral contactors $(3+N)$, the Neutral pole is rated at 900 A and is always mounted on the L.H.S. of the contactor frame.

Auxiliary contacts: 1 N.O. + 1 N.C. available.
Ordering Details

Additions and Variants

- An extra number of CA.. standard auxiliary contacts or TP.. timed auxiliary contacts can be added. see page $2 / 7$, "Auxiliary Contact Allocation":
- no increase of fixing dimension F : for ratings 1400 A and above, addition of 1 TP.. or 1 or 2 CA 15-..
- with increased fixing dimension F: for any ratings, addition of 1 TP.. and "n" CA 15-..
- Single pole version: please consult us.

IORE.. Contactors - Poles 500 V a.c.

d.c. Operated (with Economy Resistor)

Application - Description

IORE.. contactors are used for controlling a.c. power circuits up to $500 \mathbf{V}, 50 / 60 \mathrm{~Hz}$.
The contactor magnetic circuit is of the laminated type and the operating coil is fed from a d.c. supply via an economy resistor.
On 3-pole + Neutral contactors $(3+N)$, the Neutral pole is rated at $900 \mathbf{A}$ and is always mounted on the L.H.S. of the contactor frame.

Auxiliary contacts: 1 N.O. +1 N.C. available.
Ordering Details

Power AC-3			Rated operational current		No of poles	Type to be completed with: - coil voltage in plain text \qquad see page $1 / 10$	Order code to be completed with codes: - extra aux. contacts - coil voltage see page $1 / 10$	Unit weight without packing kg
380 V								
400 V			AC-3	AC-1				
415 V	440 V	500 V	$\leq 440 \mathrm{~V}$	$\theta \leq 40^{\circ} \mathrm{C}$				
kW	kW	kW	A	A				
630	710	800	1060	1350	2	IORE 1400-20	FPL 6119215 R $\square \square \square \square$	40.00
					3		FPL 6119315 R $\square \square \square \square$	50.00
					$3+N$	IORE 1400-39	FPL 6119615 R $\square \square \square \square$	62.00
					4	IORE 1400-40 لــــــــL	FPL 6119415 R $\square \square \square \square$	63.00
750		900	1260	1650	2	IORE 1700-20	FPL 6219215 R $\square \square \square \square$	44.00
					3	IORE 1700-30 Lــــــ	FPL 6219315 R $\square \square \square \square$	56.00
					$3+N$		FPL 6219615 R $\square \square \square \square$	70.00
					4	IORE 1700-40 لـــــــL	FPL 6219415 R $\square \square \square \square$	72.00
	1000	1000	1520	2000	2	IORE 2100-20 Lـــــــ	FPL 6319215 R $\square \square \square \square$	48.00
					3	IORE 2100-30 Lــــــــــ	FPL 6319315 R $\square \square \square \square$	62.00
					$3+N$	IORE 2100-39 \llcorner	FPL 6319615 R $\square \square \square \square$	76.00
					4	IORE 2100-40 لــــــL	FPL 6319415 R $\square \square \square \square$	78.00

Additions and Variants

- An extra number of CA.. standard auxiliary contacts or TP.. timed auxiliary contacts can be added. see page 2/7, "Auxiliary Contact Allocation":
- no increase of fixing dimension F : for ratings 1400 A and above, addition of 1 TP.. or 1 or 2 CA 15-..
- with increased fixing dimension F: for any ratings, addition of 1 TP.. and "n" CA 15-..
- Single pole version: please consult us.

>> Technical Datapages 2/17 ... 2/19	>> Wiring Diagrams .. section 4
>> Terminal Marking and Positioning section 4	Dimensions .. section 5

IORR-.. MT Contactors - Poles 1000 V a.c.

a.c. Operated

Application - Description
IORR..-MT contactors are used for controlling a.c. power circuits $>500 \mathbf{V}$ and $\leq 1000 \mathbf{V}, 50 / 60 \mathrm{~Hz}$. For operating voltage $\mathbf{U}_{\mathbf{e}}>1000 \mathrm{~V}$, please consult us.
The contactor magnetic circuit is of the laminated type and the operating coil is fed from an a.c. supply via a rectifier and an economy resistor.
On 3-pole + Neutral contactors $(3+\mathrm{N})$, the Neutral pole is rated at 900 A and is always mounted on the L.H.S. of the contactor frame.

Auxiliary contacts: 1 N.O. +1 N.C. available.

Ordering Details

Additions and Variants

- An extra number of CA.. standard auxiliary contacts or TP.. timed auxiliary contacts can be added. see page 2/7, "Auxiliary Contact Allocation":
- no increase of fixing dimension F: for ratings 1400 A and above, addition of 1 TP.. or 1 or 2 CA 15-..
- with increased fixing dimension F : for any ratings, addition of 1 TP.. and "n" CA 15-..

Application - Description

IORE 1400-20-MT

IORE..-MT contactors are used for controlling a.c. power circuits $>500 \mathbf{V}$ and $\leq 1000 \mathbf{V}, 50 / 60 \mathrm{~Hz}$. For operating voltage $\mathbf{U}_{\mathrm{e}}>1000 \mathrm{~V}$, please consult us.
The contactor magnetic circuit is of the laminated type and the operating coil is fed from a d.c. supply via an economy resistor.
On 3-pole + Neutral contactors $(3+N)$, the Neutral pole is rated at 900 A and is always mounted on the L.H.S. of the contactor frame.

Auxiliary contacts: 1 N.O. +1 N.C. available.
Ordering Details

Power AC-3		Rated operational current		No of poles	Type to be completed with: - coil voltage in plain text \qquad see page $1 / 10$	Order code to be completed with codes: - extra aux. contacts - coil voltage see page $1 / 10$	Unit weight without pack ${ }^{\text {ing }}$ kg
690 V	1000 V	$\leq 690 \mathrm{~V}$	$\theta \leq 40^{\circ} \mathrm{C}$				
kW	kW	A	A				
1000	900	970	1250	2	IORE 1400-20-MT Lـ.	FPL 6129215 R $\square \square \square \square$	42.00
				3	IORE 1400-30-MT \square^{\square}	FPL 6129315 R $\square \square \square \square$	52.00
				$3+N$	IORE 1400-39-MT Lـ	FPL 6129615 R $\square \square \square \square$	64.00
				4	IORE 1400-40-MT L_{\ldots}	FPL 6129415 R $\square \square \square \square$	65.00
1200	1000	1170	1650	2	IORE 1700-20-MT L...ل	FPL 6229215 R $\square \square \square \square$	47.00
				3	IORE 1700-30-MT \square^{L}	FPL 6229315 R $\square \square \square \square$	61.00
				$3+N$	IORE 1700-39-MT لــــــــL	FPL 6229615 R $\square \square \square \square$	73.00
				4	IORE 1700-40-MT	FPL 6229415 R $\square \square \square \square$	74.00
1300	1200	1270	1850	2	IORE 2100-20-MT \llcorner	FPL 6329215 R $\square \square \square \square$	52.00
				3	IORE 2100-30-MT L^{\ldots}	FPL 6329315 R $\square \square \square \square$	68.00
				$3+N$	IORE 2100-39-MT LـــــL	FPL 6329615 R $\square \square \square \square$	82.00
				4	IORE 2100-40-MT $L^{\text {L }}$	FPL 6329415 R $\square \square \square \square$	84.00

Additions and Variants

- An extra number of CA.. standard auxiliary contacts or TP.. timed auxiliary contacts can be added. see page 2/7, "Auxiliary Contact Allocation":
- no increase of fixing dimension F: for ratings 1400 A and above, addition of 1 TP.. or 1 or 2 CA 15-..
- with increased fixing dimension F: for any ratings, addition of 1 TP.. and "n" CA 15-..

>> Technical Datapages 2/20 ... 2/22	>> Wiring Diagrams ... section 4
>> Terminal Marking and Positioning section 4	> Dimensions ... section 5

IORR．．－CC，IORE．．－CC Contactors
 for d．c．Application

a．c．Operated（RR）or d．c．Operated（RE）

Application－Description

IORR．．－CC and IORE．．－CC contactors are used for controlling d．c．power circuits，at voltages $\mathbf{U}_{e} \leq 1500 \mathrm{~V}$ d．c． （time constant L／R $\leq 7.5 \mathrm{~ms}$ ）．（For L／R $>7.5 \mathrm{~ms}$ ：please consult us．）

Auxiliary contacts： 1 N．O．+1 N．C．available．
1－pole Contators－Ordering Details

Rated operational current		Number of poles	Type to be completed with： －coil voltage in plain text $L \ldots$ see page $1 / 10$	Order code to be completed with codes： －extra aux．contacts －coil voltage see page $1 / 10$	Unit weight without pack ${ }^{\text {ing }}$ kg
$\begin{aligned} & \mathrm{U}_{\mathrm{e}} \leq 750 \mathrm{~V} \text { d.c. } \\ & \mathrm{DC}-1 \end{aligned}$	$\begin{aligned} & \mathrm{U}_{\mathrm{e}} \leq 600 \mathrm{~V} \text { d.c. } \\ & \mathrm{DC}-3 / \mathrm{DC}-5 \end{aligned}$				
A	A				
IORR．．－CC contactors（a．c．operated）					
1000	1000	1	IORR 1000－10－CC L．．．	FPL $8715115 \mathrm{R} \square \square \square \square$	31.00
1250	1250	1	IORR 1400－10－CC $\llcorner\ldots$	FPL 6116115 R $\square \square \square \square$	32.00
1600	1600	1	IORR 1700－10－CC L．．」	FPL 6216115 R $\square \square \square \square$	34.00
2000	2000	1	IORR 2100－10－CC Lــــ	FPL 6316115 R $\square \square \square \square$	37.00

Note：The IORR 1000－10－CC contactor must be provided on request in IOR 1000－10－CC version for direct supply of the coil （coil 50 Hz or coil 60 Hz ）．

IORE．．－CC contactors（d．c．operated－with economy resistor）

1000	1000	1	IORE 1000－10－CC	FPL $8710115 \mathrm{R} \square \square \square \square$	31.00
1250	1250	1	IORE 1400－10－CC $\square_{\text {L }}$	FPL $6110115 \mathrm{R} \square \square \square \square$	32.00
1600	1600	1	IORE 1700－10－CC L．．．	FPL 6210115 R $\square \square \square \square$	34.00
2000	2000	1	IORE 2100－10－CC $L^{\text {L }}$	FPL 6310115 R $\square \square \square \square$	37.00

2－pole Contactors（comnection of the 2 poles in series）－Ordering Details

Rated operat $\begin{aligned} & \mathrm{U}_{\mathrm{e}} \leq 1500 \mathrm{~V} \text { d.c. } \\ & \mathrm{DC}-1 \\ & \text { A } \end{aligned}$	tional current $\mathrm{U}_{\mathrm{e}} \leq 1000 \mathrm{~V} \text { d.c. }$ DC-3/DC-5 A	Number of poles	Type to be completed with： －coil voltage in plain text $L \ldots$ see page $1 / 10$	Order code to be completed with codes： －extra aux．contacts －coil voltage see page $1 / 10$	Unit weight without pack ${ }^{\text {ing }}$ kg
IORR．．－CC contactors（a．c．operated）					
1000	1000	2	IORR 1000－20－CC $\llcorner\ldots$	FPL 8716215 R $\square \square \square \square$	40.00
1250	1250	2	IORR 1400－20－CC Lـ」	FPL 6116215 R $\square \square \square \square$	42.00
1600	1600	2	IORR 1700－20－CC L	FPL 6216215 R $\square \square \square \square$	47.00
2000	2000	2	IORR 2100－20－CC Lـ」	FPL 6316215 R $\square \square \square \square$	52.00

Note：The IORR 1000－20－CC contactor must be provided on request in IOR 1000－20－CC version for direct supply of the coil （coil 50 Hz or coil 60 Hz ）．

IORE．．－CC contactors（d．c．operated－with economy resistor）

1000	1000	2	IORE 1000－20－CC $\square^{\text {L．}}$	FPL 8710215 R $\square \square \square \square$	41.00
1250	1250	2	IORE 1400－20－CC L．．．	FPL 6110215 R $\square \square \square \square$	42.00
1600	1600	2	IORE 1700－20－CC L．	FPL 6210215 R $\square \square \square \square$	47.00
2000	2000	2	IORE 2100－20－CC $\ldots \ldots$	FPL 6310215 R $\square \square \square \square$	52.00

＞＞Technical Data ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．pages 2／23 ．．．2／25

＞＞Terminal Marking and Positioning ．．．．．．．．．．．．．．．．．．．．．．．section 4 \quad| ＞＞Wiring Diagrams ．．section 4 |
| :--- |
| ＞＞Dimensions ．．section 5 |

IORR..-CC, IORE..-CC Contactors
 for d.c. Application

a.c. Operated (RR) or d.c. Operated (RE)

3-pole Contactors (Connection of the 3 poles in series) - Ordering Details

Rated operational current		Number of poles	Type to be completed with: - coil voltage in plain text $L \ldots$ see page $1 / 10$	Order code to be completed with codes: - extra aux.contacts - coil voltage see page $1 / 10$	Unit weight without pack ${ }^{\text {ing }}$ kg
$\mathrm{U}_{\mathrm{e}} \leq 15$					
$\begin{aligned} & \text { DC-1 } \\ & \text { A } \end{aligned}$	DC-3/DC-5 A				
IORR..-CC contactors (a.c. operated)					
1000	1000	3	IORR 1000-30-CC L.	FPL 8716315 R $\square \square \square \square$	50.00
1250	1250	3	IORR 1400-30-CC	FPL 6116315 R $\square \square \square \square$	52.00
1600	1600	3	IORR 1700-30-CC L...	FPL 6216315 R $\square \square \square \square$	61.00
2000	2000	3	IORR 2100-30-CC LــــــL	FPL 6316315 R $\square \square \square \square$	68.00

Note: The IORR 1000-30-CC contactor must be provided on request in IOR 1000-30-CC version for direct supply of the coil (coil 50 Hz or coil 60 Hz).

IORE..-CC contactors (d.c. operated - with economy resistor)

1000	1000	3	IORR 1000-30-CC	FPL 8710315 R $\square \square \square \square$	50.00
1250	1250	3	IORE 1400-30-CC \llcorner	FPL 6110315 R $\square \square \square \square$	52.00
1600	1600	3	IORE 1700-30-CC	FPL 6210315 R $\square \square \square \square$	61.00
2000	2000	3	IORE 2100-30-CC	FPL 6310315 R $\square \square \square \square$	68.00

[^2]
IORR..-AME and IORE..-AME Mechanically Latched Contactors

Special contactor (AM-CC.. type) with mechanical latching.

Application

IORR..-AME and IORE..-AME mechanically latched contactors are used for controlling power circuits up to $\leq 500 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$.

Examples of use

- installations where the control circuits are fed from batteries, and it is desirable to reduce the power consumption.
- contactors used in sequence control. In the case of an accidental supply failure one may want to know precisely the state (ON or OFF) of particular contactors at the instant the supply failure occured.
- contactors which must remain closed for safety reasons, even if the control circuit supply has come off.
- contactors in distribution circuits (the contactor can be used as an isolating switch operated by a signal to the coil).
- protection against accidental failure of the mains supply. The contactor would remain closed whatever the duration of the fault may be.
- contactors which remain almost permanently closed. Coil consumption energy savings are increased compared to standard contactors whose coils remain permanently energized.

Description

IORR..-AME and IORE..-AME mechanically latched contactors differ from IORR and IORE standard contactors by a double electro-magnet (with closing and tripping coils, electrically separate).
Making and breaking capacities are identical to those of standard contactors of the same rating
The IORR..-AME mechanically latched contactors are a.c. operated. For the IORR..-AME types, the closing coil only, is fed from an a.c. supply via a rectifier and an economy resistor to limit the current value in control circuit.
The IORE..-AME mechanically latched contactors are d.c. operated. The closing coil is fed via an economy resistor to limit the current value in control circuit. The tripping coil is fed directly from a d.c. supply without economy resistor.

On 4-pole contactors, with 3 poles + neutral $(3+N)$, the neutral pole is always rated at $900 \mathbf{A}$ and mounted on the left hand side of the contactor frame.

Construction

A mechanical latch is mounted above the closing electro-magnet. The tripping electro-magnet releases the mechanical latch.

Operation

- Closing of contactor (latching)

Once the closing coil is energized the contactor closes and will remain so indefinitely by the action of the mechanical latch which holds in the moving part of the closing electro-magnet.
The closing coil is de-energized by an electrical interlocking contact mounted on the contactor.

- Opening of contactor (de-latching)

Once the tripping coil is energized, the tripping electro-magnet releases the mechanical latch, de-latching the moving part of the closing electro-magnet, allowing the contactor to open. Once the contactor is open, the tripping coil is de-energized by an electrical interlocking contact mounted on the contactor.
IORR..-AMF and IORE..-AMF variants are designed with 2 tripping coils (double de-latching control).

Auxiliary contacts

The auxiliary contacts fitted as standard are used for de-energization of closing and tripping coils. None are available as standard.

Additions (see page 2/7)
Extra CA.. auxiliary contacts or TP.. timed auxiliary contacts can be added.

a.c. Operated

Special contactor (AM-CC.. type)
with mechanical latching.

Ordering Details

Variants

- IORR..-MT-AME types for 500 V a.c. $<\mathbf{U}_{\mathrm{e}}<1000$ V a.c.
- IORR..-CC-AME types for $\mathbf{U}_{\mathbf{e}}<1500 \mathbf{V}$ d.c.
- IORR..-AMF types with 2 tripping coils (double de-latching control).

[^3]
IORE..-AME

Mechanically Latched Contactors
d.c. Operated

Special contactor (AM-CC.. type) with mechanical latching.

Ordering Details

Variants

- IORE..-MT-AME types for $500 \mathbf{V}$ a.c. $<\mathbf{U}_{\mathrm{e}}<1000 \mathbf{V}$ a.c.
- IORE..-CC-AME types for $\mathbf{U}_{\mathrm{e}}<1500 \mathrm{~V}$ d.c.
- IORE..-AMF types with 2 tripping coils (double de-latching control).

>> Electro-magnet Characteristics. \qquad please consult us >> Wiring Diagrams \qquad section 4 >> Terminal Marking and Positioning \qquad section 4 >> Dimensions \qquad section 5	

IORR and IORE Contactors

Voltages up to 500 V a.c. - 1400 ... 2100 A Ratings

>> Main Pole Utilization Characteristics \qquad page 2/18 >> RE and RR Electro-magnet Characteristics \qquad page 2/19 >> General Technical Data \qquad section 3	>> Terminal Marking and Positioning \qquad section 4 >> Wiring Diagrams \qquad section 4 >> Dimensions \qquad section 5

IORR and IORE Contactors

Voltages up to 500 V a.c. - 1400 ... 2100 A Ratings

Technical Data (cont.)			
Electro-magnet type / Contactor rating	-	-	-
	RR 1400	RR 1700	RR 2100
	RE 1400	RE 1700	RE 2100
	-	-	-
Main Pole Utilization Characteristics			
Rated operational voltage U_{e} max. V	500		
Rated frequency limits Hz	$25 \ldots 60$ (for $>60 \mathrm{~Hz} \ldots 400 \mathrm{~Hz}$ please consult us)		
Conventional free-air thermal current I_{th} according to IEC 60947-4-1			
open contactors, $\theta \leq 40^{\circ} \mathrm{C}$ A	1400	1700	2100
with conductor cross-sectional area $\mathbf{m m}^{\mathbf{2}}$	1000	1500	2000
Rated operational current $\mathrm{I}_{\mathrm{e}} /$ AC-1			
according to air temperature			
	1350	1650	2000
$\theta \leq 55^{\circ} \mathrm{C}$ A	1180	1450	1750
$\theta \leq 70^{\circ} \mathrm{C}$ A	1000	1250	1500
with conductor cross-sectional area $\mathrm{mm}^{\mathbf{2}}$	1000	1500	1500
Utilization category AC-3			
Values for air temperature close to contactor $\leq 55^{\circ} \mathrm{C}$			
Rated operational current $\mathrm{I}_{\mathrm{e}} / \mathrm{AC}-3$			
380-415-440 V A	1060	1260	1520
500 V A	1080	1220	1340
Rated operational power AC-3			
380-415 V kW	630	750	900
440 V (kW	710	800	1000
500 V - kW	800	900	1000
Rated making capacity AC-3			
according to IEC 60947-4-1	$\underline{10 \times 1}$		
Rated breaking capacity AC-3			
	$8 \times{ }^{\text {e }} / \mathrm{AC}$		
Short-circuit protection for contactors without thermal O/L relay (motor protection excluded)			
Circuit breaker A	1600	2000	2500
Rated short-time withstand 1 s. current $\mathrm{I}_{\text {cw }}$ at $40^{\circ} \mathrm{C}$ ambient temp. 10 s in in free air, from a cold state 30 s \mathbf{A} 1 min. \mathbf{A} 15 min.	11000	13000	15000
	9000	11000	12200
	5000	6000	7000
	3700	4400	5000
	2000	2400	2800
Maximum breaking capacity at $\cos \varphi=0.35$			
Impedance per pole $\mathrm{m} \Omega$	0.10	0.09	0.08
Max. electrical switching frequency			
- for AC-1 cycles/h	150	120	
- for AC-3 cycles/h	150	120	
Max. mechanical switching frequency cycles/h	600		
Mechanical durability in millions of operating cycles - RR, RE types	2		

[^4]1SBC104113C0201

IORR and IORE Contactors

Laminated Magnetic Circuit

a.c. or d.c. Operated

Electro-magnet Characteristics - IORR Contactors (a.c. operated)

Electro-magnet Characteristics - IORE Contactors (d.c. operated)

Electro-magnet type / Contactor rating	RE 1400	RE 1700	RE 2100
Rated control circuit voltage $\mathbf{U}_{\text {c }}$			
V d.c.	$24 . . .600$		
Coil operating limits according to IEC 60947-4-1	$0.85 \ldots 1.1 \times \mathrm{U}_{6}$		
Drop-out voltage in \% of $\mathbf{U}_{\text {c }}$	roughly $10 \ldots 7$		
Coil consumption (for $\mathbf{U}_{\mathbf{c}}$)			
Average pull-in value W	2 up to 4 Poles: 930	2 up to 4 Poles: 930	2 up to 4 Poles: 930
Average holding value W	2 up to 4 Poles: 110	2 up to 4 Poles: 110	2 up to 4 Poles: 110
Operating time (average values for \mathbf{U}_{c})			
Between coil energization and N.O. contact closing	100	90	90
Between coil de-energization and N.O. contact opening	55	40	30

IORR..-MT and IORE..-MT Contactors

Voltages up to 1000 V a.c. - 1400 ... 2100 A Ratings

[^5]

IORR..-MT and IORE..-MT Contactors
Voltages up to 1000 V a.c. - 1400 ... 2100 A Ratings

Electro-magnet type / Contactor rating	- RR 1400-MT RE 1400-MT	- RR 1700-MT RE 1700-MT	RR 2100-MT RE 2100-MT
Main Pole Utilization Characteristics			
Rated operational voltage U_{e} max. V	1000		
Rated frequency limits Hz	$25 . . .60$ (for >	please consult	
$\begin{aligned} & \text { Conventional free-air thermal current } \mathrm{I}_{\mathrm{th}} \\ & \text { according to IEC } 60947-4-1 \\ & \text { open contactors, } \theta \leq 40^{\circ} \mathrm{C} \\ & \text { with conductor cross-sectional area A } \end{aligned}$	$\begin{aligned} & 1300 \\ & 1000 \end{aligned}$	$\begin{aligned} & 1700 \\ & 1500 \end{aligned}$	$\begin{aligned} & 1850 \\ & 1500 \end{aligned}$
$\begin{array}{lr} \hline \text { Rated operational current } \mathrm{I}_{\mathrm{e}} / \text { AC-1 } & \\ \text { according to air temperature } & \\ \text { close to contactor }\left(\mathrm{U}_{\mathrm{e}} \text { max. } 690 \mathrm{~V}\right) & \\ \theta \leq 40^{\circ} \mathrm{C} & \text { A } \\ \theta \leq 55^{\circ} \mathrm{C} & \text { A } \\ \theta \leq 70^{\circ} \mathrm{C} & \text { A } \\ \text { with conductor cross-sectional area } & \mathbf{m m}^{2} \end{array}$	$\begin{aligned} & 1250 \\ & 1100 \\ & 900 \\ & 1000 \end{aligned}$	$\begin{aligned} & 1650 \\ & 1450 \\ & 1250 \\ & 1500 \end{aligned}$	$\begin{aligned} & 1850 \\ & 1620 \\ & 1400 \\ & 1500 \end{aligned}$
Utilization category AC-3 Values for air temperature close to contactor $\leq 55^{\circ} \mathrm{C}$ Rated operational current $I_{e} /$ AC-3 $690 \text { V }$ 1000 V	$\begin{aligned} & 970 \\ & 610 \end{aligned}$	$\begin{aligned} & 1170 \\ & 680 \end{aligned}$	$\begin{aligned} & 1270 \\ & 810 \end{aligned}$
$\begin{array}{ll} \text { Rated operational power AC-3 } & \\ 690 \mathrm{~V} & \text { kW } \\ 1000 \mathrm{~V} & \text { kW } \end{array}$	$\begin{aligned} & 1000 \\ & 900 \end{aligned}$	$\begin{aligned} & 1200 \\ & 1000 \end{aligned}$	$\begin{aligned} & 1300 \\ & 1200 \end{aligned}$
Rated making capacity AC-3 according to IEC 60947-4-1	$10 \times \mathrm{I}_{\mathrm{e}} /$ AC-3		
Rated breaking capacity AC-3 according to IEC 60947-4-1	$8 \times \mathrm{I}_{\mathrm{e}} /$ AC-3		
Short-circuit protection for contactors without thermal O/L relay (motor protection excluded) Circuit breaker	1600	2000	2500
Rated short-time withstand 1 s current $I_{\text {cw }}$ at $40^{\circ} \mathrm{C}$ ambient temp. 10 s \mathbf{A} in free air, from a cold state 30 s \mathbf{A} 15 min. \mathbf{A}	$\begin{aligned} & 11000 \\ & 9000 \\ & 5000 \\ & 3600 \\ & 1900 \end{aligned}$	$\begin{aligned} & 13000 \\ & 11000 \\ & 6000 \\ & 4200 \\ & 2200 \end{aligned}$	$\begin{aligned} & 15000 \\ & 12000 \\ & 7000 \\ & 4600 \\ & 2600 \end{aligned}$
$\begin{array}{r} \text { Maximum breaking capacity at } \cos \varphi=0.35 \\ \text { at } 690 \mathrm{~V} \\ \text { at } 1000 \mathrm{~V} \end{array}$	$\begin{aligned} & 8500 \\ & 5000 \end{aligned}$	$\begin{aligned} & 11000 \\ & 8500 \end{aligned}$	
Impedance per pole $\quad \mathrm{m} \Omega$	0.24	0.18	0.17
Max. electrical switching frequency	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 120 \\ & 120 \end{aligned}$	
Max. mechanical switching frequency cycles/h	600		
Mechanical durability in millions of operating cycles - RR, RE types	2		

[^6]
IORR..-MT and IORE..-MT Contactors

Laminated Magnetic Circuit
a.c. or d.c. Operated

Electro-magnet Characteristics - IORR..-MT Contactors (a.c. operated)

Note: For AME contactor versions, please consult us.

Electro-magnet Characteristics - IORE..-MT Contactors (d.c. operated)

Electro-magnet type / Contactor rating	RE 1400-MT	RE 1700-MT	RE 2100-MT
Rated control circuit voltage $\mathbf{U}_{\text {c }}$			
V d.c.	$24 \ldots 600$		
Coil operating limits according to IEC 60947-4-1	$0.85 \ldots 1.1 \times \mathrm{U}_{\mathrm{c}}$		
Drop-out voltage in \% of $\mathbf{U}_{\text {c }}$	roughly $10 \ldots 75$		
Coil consumption (for $\mathbf{U}_{\mathbf{c}}$)			
Average pull-in value W	2 up to 4 Poles: 930	2 up to 4 Poles: 930	2 up to 4 Poles: 930
Average holding value W	2 up to 4 Poles: 110	2 up to 4 Poles: 110	2 up to 4 Poles: 110
Operating time (average values for $\mathbf{U}_{\text {c }}$)			
Between coil energization and N.O. contact closing	100	90	90
Between coil de-energization and N.O. contact opening	55	40	30

IORR..-CC and IORE..-CC Contactors
 for d.c. Application
 1000 ... 2100 A Ratings

Technical Data

[^7]| >> Main Pole Utilization Characteristics \qquad page 2/23
 >> RE and RR Electro-magnet Characteristics \qquad page 2/25
 >> General Technical Data \qquad section 3 | >> Terminal Marking and Positioning \qquad section 4
 >> Wiring Diagrams \qquad section 4
 >> Dimensions \qquad section 5 |
| :---: | :---: |

IORR..-CC and IORE..-CC Contactors

for d.c. Application
1000 ... 2100 A Ratings
Technical Data (cont.)

Electro-magnet type / Contactor rating	RR 1000-CC RE 1000-CC	RR 1400-CC RE 1400-CC	RR 1700-CC RE 1700-CC	RR 2100-CC RE 2100-CC
Main Pole Utilization Characteristics				
Rated operational voltage $\mathrm{U}_{\mathrm{e}} \quad \mathrm{V}$ d.c.	600 (750 in DC-1 category) / 1000 / 1500			
L/R time constant ms	≤ 7.5 (for L/R $>7.5 \mathrm{~ms}$ please consult us)			
Conventional free-air thermal current $I_{\text {th }}$ acc. to IEC 60947-4-1- Open contactors, $\theta \leq 40^{\circ} \mathrm{C} \quad$ A with conductor cross-sectional area $\mathbf{m m}^{\mathbf{2}}$	$\begin{aligned} & 1000 \\ & 600 \end{aligned}$	$\begin{aligned} & 1300 \\ & 1000 \end{aligned}$	$\begin{aligned} & 1700 \\ & 1500 \end{aligned}$	$\begin{aligned} & 2000 \\ & 1500 \end{aligned}$
Rated operational current I_{e} DC-1 category, $\mathbf{L} / \mathbf{R} \leq \mathbf{1 m s}$				
(1 pole U^{1}	1000	1250	1600	2000
	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	$\begin{aligned} & 1250 \\ & 1250 \end{aligned}$	$\begin{aligned} & 1600 \\ & 1600 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2000 \end{aligned}$
DC-3 category, L/R $\mathbf{2} \mathbf{~ m s}$				
$\underbrace{1 \text { pole }}_{\square} \mathrm{U}_{\mathrm{e}} \leq 600 \mathrm{~V} \quad \mathbf{A}$	1000	1250	1600	2000
$)^{\text {a }}$	1000	1250	1600	2000
$) \square^{3}$	1000	1250	1600	2000
DC-5 category, L/R $\leq 7.5 \mathrm{~ms}$				
(1 pole $\mathrm{U}^{\text {a }}$	1000	1250	1600	2000
$\underbrace{\text { in series }}$ inoles $\underbrace{\text { in }}$	1000	1250	1600	2000
$\sqrt{1} \square \underbrace{\begin{array}{l} 3 \text { poles } \\ \text { in } \end{array} \quad \mathrm{U}_{\mathrm{e}} \leq 1500 \mathrm{~V} \quad \mathbf{A}}_{\text {in series }}$	1000	1250	1600	2000
Contact resistance per pole $\quad \mathrm{m} \Omega$	0.12	0.10	0.048	0.032
Max. electrical switching frequency cycles/h	40			
Max. mechanical switching frequency cycles/h	1200	600		
Mechanical durability in millions of operating cycles - RR, RE types	5	2		

Notes: The arc switching on d.c. is more difficult than on a.c.
For selecting a contactor, is essential to determine the current, the voltage, an the L/R time constant of the controlled load.
For information, typical time constant values are quoted hereafter: non inductive loads such as resistance furnaces: L/R $\leq 1 \mathrm{~ms}$; inductive loads such as shunt motor: L/R $\leq 2 \mathrm{~ms}$; series motor: $\mathbf{L} / \mathrm{R} \leq 7.5 \mathrm{~ms}$.
The addition of a resistor in parallel with an inductive winding helps in the elimination of the arcs.
All the poles required for breaking must be connected, in series, between the load and the source polarity not linked to the earth.
Connection of the poles in series by the user, according to the above diagrams. The connection of the poles in series helps in the elimination of the arcs.
These characteristics are suitable for CC-AME contactor versions (except for mechanical durability $=0.2$ millions of operating cycles).
For IOR 1000-CC contactor, please consult us.

IORR..-CC and IORE..-CC Contactors

Laminated Magnetic Circuit
a.c. or d.c. Operated

Electro-magnet Characteristics - IORR..-CC Contactors (a.c. operated)

Electro-magnet Characteristics - IORE..-CC Contactors (d.c. operated)

Electro-magnet type / Contactor rating	RE 1000-CC	RE 1400-CC	RE 1700-CC	RE 2100-CC
Rated control circuit voltage $\mathbf{U}_{\text {c }}$				
V d.c.	$24 . .600$			
Coil operating limits according to IEC 60947-4-1	$0.85 \ldots 1.1 \times \mathrm{U}_{\mathrm{c}}\left(\right.$ for $\theta \leq 55{ }^{\circ} \mathrm{C}$)			
Drop-out voltage in \% of $\mathbf{U}_{\mathbf{c}}$	roughly $10 \ldots 75$ \%			
Coil consumption (for $\mathbf{U}_{\mathbf{c}}$)				
Average pull-in value W	700	2 up to 4 Poles: 930	2 up to 4 Poles: 930	2 up to 4 Poles: 930
Average holding value W	55	2 up to 4 Poles: 110	2 up to 4 Poles: 110	2 up to 4 Poles: 110
Operating time (average values for \mathbf{U}_{c})				
Between coil energization and N.O. contact closing	70	100	90	90
Between coil de-energization and N.O. contact opening	50	55	40	30

R.. Series Contactors

CA.. Standard and TP.. Timed Auxiliary Contact Blocks

Technical Data of the Standard Auxiliary Contacts

Types		CA 15..
Rated operational voltage U_{e} max.	V	690
Rated frequency limits	Hz	$25 . . .400$
Conventional free-air thermal current $I_{\text {th }}$ $\theta \leq 40^{\circ} \mathrm{C}$	A	15
$\begin{aligned} & \text { Rated operational current } \\ & \mathbf{I}_{\mathbf{e}} / \text { AC-15 acc. to IEC 60947-5-1 } \\ & 24-48 \mathrm{~V} 50 / 60 \mathrm{~Hz} \\ & 110-127 \mathrm{~V} 50 / 60 \mathrm{~Hz} \\ & 220-240 \mathrm{~V} 50 / 60 \mathrm{~Hz} \\ & 380-440 \mathrm{~V} 50 / 60 \mathrm{~Hz} \\ & 500-600 \mathrm{~V} 50 / 60 \mathrm{~Hz} \end{aligned}$	A A A A A	$\begin{aligned} & 10 \\ & 10 \\ & 6 \\ & 3.5 \\ & 2.5 \end{aligned}$
$\begin{aligned} & \mathrm{I}_{\mathrm{e}} / \mathrm{DC}-13 \text { acc. to IEC 60947-5-1 } \\ & 24 \mathrm{~V} \text { d.c. } \\ & 48 \mathrm{~V} \text { d.c. } \\ & 72 \mathrm{~V} \text { d.c. } \\ & 110-125 \mathrm{~V} \text { d.c. } \\ & 220-250 \mathrm{~V} \text { d.c. } \end{aligned}$	A A A A A	$\begin{aligned} & 6 \\ & 2.8 \\ & 1 \\ & 0.55 \\ & 0.3 \end{aligned}$
Rated making capacity acc. to IEC 60947-5-1		$10 \times \mathrm{I}_{\mathrm{e}} /$ AC-15
Rated breaking capacity acc. to IEC 60947-5-1		$10 \times \mathrm{l}$ / $/$ AC-15
Short-circuit protection gG type fuses	A	16

Technical Data of the Timed Auxiliary Contact Blocks

[^8]
Closed Transition Star-Delta Starting of Three-Phase Asynchronous Motors

R.. Series Contactors

Application

R.. series contactors can be used for closed transition star-delta starting of three-phase asynchronous motors up to $\mathbf{1 2 0 0} \mathbf{k W}$.

Principle

This starting method, mainly used for large motor powers, prevents the speed drop during the "star-delta" transition time and maintains the resulting current peak at a relatively low value.
For this purpose the extra KM4 transition contactor closes first before the KM2 star contactor opens. When the KM4 contactor closes the motor windings are automatically delta connected, via resistances to compensate the lack of current during the transition time and thus the motor speed remains basically the same. The final delta connection step is then achieved by the KM3 delta contactor closing which switches-off the coil supply to the KM4 transition contactor. As in the basic star-delta starting mode, the closed transition star-delta starting mode is restricted to low resistive torque machines.
It is advisable, especially for big masses of inertia, to observe that the connection is made in acc. to the clockwise or anticlockwise rotation direction, as indicated in the block diagram shown below, in order to prevent damages due to torque throbs.

Equipment Sizing

- KM1 Main Contactor and KM3 Star Contactor: rating $=0.58 \times \mathbf{I}_{\mathbf{n}}$ for both contactors
- KM2 Star Contactor: compared with a star contactor that would be used for a basic open transition star-delta starter the present KM2 star contactor has to be over-rated as it is intended to break the star current ($0.34 \times \mathbf{I}_{\mathrm{n}}$) and the transition current too.
- KM4 Transition Contactor: the rating is based on the calculation of the short permissible current duration (\mathbf{I}_{cw}).

The value of the current flow is about $1.5 \times \mathrm{I}_{\mathrm{n}}$ and the current flow duration $<100 \mathrm{~ms}$.
A block type contactor in the A series can be selected for this step.

- Transition Resistances: empiric value, generally as follows, $\mathbf{R}(\Omega)=\frac{0.4 \times \mathbf{U}_{e}}{\mathbf{I}_{\mathbf{n}}}$

Watt dissipation values for the transition resistances:

- for 12 cycles/h max. $\quad \mathbf{P}(\mathbf{W})=\frac{\mathbf{U}_{\mathrm{e}}{ }^{2}}{1200 \times \mathbf{R}}$
- for 30 cycles/h max. $\quad \mathbf{P}(\mathbf{W})=\frac{\mathbf{U}_{\mathbf{e}}{ }^{2}}{500 \times \mathbf{R}}$

Block Diagram

>> Ordering Details ...page 2/8 and following ones	>> Terminal Marking and Positioning ... section 4
>> Technical Data ...page 2/17 and following ones	>> Dimensions .. section 5
>> "A" Series Block Contactorssee Main Catalogue in force

Control of Three-Phase Slip-Ring Motors

Contactor Selection

Application

Three kinds of contactors are used to control three-phase slip-ring motors: the stator contactor, the acceleration contactor(s), and the rotor short-circuit contactor.

Example of a Three-Stroke Starter (Delta (Δ) connection diagram)

The starting resistances should be Delta (Δ), Star (人), V or W connected acc. to the following wiring diagrams. Contactors have to be selected accordingly.

The standard \mathbf{R} series contactors, can be used acc. to the criteria indicated below. The FORR.. or FORE.. contactor types should be mainly used for the rotor short-circuiting. (Please consult us)

Stator Contactor

The \mathbf{R} series contactor selection is based on the motor rated current acc. to the AC-2 utilization category, as well as on the rated operational voltage and the on-load factor.

Acceleration Contactors

The \mathbf{R} series contactor selection is based on the contactor rated operational current $\mathbf{I}_{\mathbf{e}}$ acc. to the AC-1 utilization category, multiplied by the coefficient which includes the resistance duty duration, the number of operating cycles, and depends on the applicable connection diagram.
The LORR.. and LORE.. couplers may be used for applications where equipment is breaking in "Off-load" conditions only. (Please consult us)

Rotor Short-Circuit Contactor

The \mathbf{R} series contactor selection is based on the contactor rated operational current \mathbf{I}_{e} acc. to the AC-1 utilization category but the rated operational current of the selected contactor has to be greater than the motor rotor current and the applicable connection diagram does matter too.
The LORR.. and LORE.. couplers may be used for applications where equipment is breaking in "Off-load" conditions only. (Please consult us) At the time of the short-circuiting the contactor involved has to withstand the short duration rotor voltage peak which is fully acceptable by the contactor in spite of its lower rated insulation voltage. The standard \mathbf{R} series contactors are therefore suitable to withstand rotor voltages up to 1500 V. (Coefficent 2 accepted acc.to IEC 60947-4-1 Standard)

- FORR.., FORE.. Specific Contactors (please consult us)

At the time of slip-ring motor starting and as soon as the motor nominal speed is reached, these contactors are used for the short-circuiting of the rotor current limitation starting resistances (e.g. vapour-liquid rheostats).
These contactors are derived from the standard \mathbf{R} series contactors and are available in 2, 3 or 4-pole version acc. to the applicable connection diagram required ($\lambda, \mathrm{V}, \mathrm{W}$).
They can control rotor currents from 800 to 2000 A and rotor voltages up to 6000 V (with increased insulation) acc. to the IEC 60947-4-1 Standard requirements. (Please consult us).
Although the breaking of the rotor circuit is normally carried out in "Off-load" conditions, the contactors are equipped with blow-out devices and can occasionally break "On-load".
Ordering Details - Technical Data - Dimensions : please consult us
>> Ordering Details ...page 2/8 and following ones

>> FORR.., FORE.. Specific contactors \qquad please consult us >> LORR.., LORE.. Couplers \qquad please consult us >> Dimensions \qquad section 5

>> Terminal Marking and Positioning section 4
>> Dimensions

Please photocopy and forward (see catalogue last back cover page).
Questionnaire also available on the ABB Website www.abb.com/lowvoltage left menu: "Low Voltage On-Line" select: "Support Tools".

Motor Rated Operational Powers and Currents

The currents given below concern standard three-phase four-pole cage motors (1500 r.p.m. at 50 Hz . 1800 r.p.m. at 60 Hz).
These values are given for guidance and may vary according to the motor manufacturer and depending on the number of poles.

IEC	Motor nominal current (according to IEC 60947-4-1 Annex G)									
Motor power kW	$\begin{aligned} & 220 \mathrm{~V} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 230 \mathrm{~V} \\ & \mathbf{A} \\ & \hline \end{aligned}$	$\begin{aligned} & 240 \mathrm{~V} \\ & \mathbf{A} \\ & \hline \end{aligned}$	$\begin{aligned} & 380 \mathrm{~V} \\ & \mathbf{A} \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \mathrm{~V} \\ & \mathbf{A} \end{aligned}$	$\begin{aligned} & 415 \mathrm{~V} \\ & \mathbf{A} \\ & \hline \end{aligned}$	$\begin{aligned} & 440 \mathrm{~V} \\ & \mathbf{A} \\ & \hline \end{aligned}$	$\begin{aligned} & 500 \mathrm{~V} \\ & \mathbf{A} \\ & \hline \end{aligned}$	$\begin{aligned} & 660 \mathrm{~V} \\ & \mathbf{A} \\ & \hline \end{aligned}$	$\begin{aligned} & 690 \mathrm{~V} \\ & \mathbf{A} \\ & \hline \end{aligned}$
0.06	0.37	0.35	0.34	0.21	0.2	0.19	0.18	0.16	0.13	0.12
0.09	0.54	0.52	0.50	0.32	0.3	0.29	0.26	0.24	0.18	0.17
0.12	0.73	0.7	0.67	0.46	0.44	0.42	0.39	0.32	0.24	0.23
0.18	1	1	1	0.63	0.6	0.58	0.53	0.48	0.37	0.35
0.25	1.6	1.5	1.4	0.9	0.85	0.82	0.74	0.68	0.51	0.49
0.37	2.0	1.9	1.8	1.2	1.1	1.1	1.0	0.88	0.67	0.64
0.55	2.7	2.6	2.5	1.6	1.5	1.4	1.3	1.2	0.91	0.87
0.75	3.5	3.3	3.2	2.0	1.9	1.8	1.7	1.5	1.15	1.1
1.1	4.9	4.7	4.5	2.8	2.7	2.6	2.4	2.2	1.7	1.6
1.5	6.6	6.3	6.0	3.8	3.6	3.5	3.2	2.9	2.2	2.1
2.2	8.9	8.5	8.1	5.2	4.9	4.7	4.3	3.9	2.9	2.8
3	11.8	11.3	10.8	6.8	6.5	6.3	5.7	5.2	4.0	3.8
4	15.7	15	14.4	8.9	8.5	8.2	7.4	6.8	5.1	4.9
5.5	20.9	20	19.2	12.1	11.5	11.1	10.1	9.2	7.0	6.7
7.5	28.2	27	25.9	16.3	15.5	14.9	13.6	12.4	9.3	8.9
11	39.7	38	36.4	23.2	22	21.2	19.3	17.6	13.4	12.8
15	53.3	51	48.9	30.5	29	28.0	25.4	23	17.8	17
18.5	63.8	61	58.5	36.8	35	33.7	30.7	28	22.0	21
22	75.3	72	69	43.2	41	39.5	35.9	33	25.1	24
30	100	96	92	57.9	55	53	48.2	44	33.5	32
37	120	115	110	69	66	64	58	53	40.8	39
45	146	140	134	84	80	77	70	64	49.1	47
55	177	169	162	102	97	93	85	78	59.6	57
75	240	230	220	139	132	127	116	106	81	77
90	291	278	266	168	160	154	140	128	97	93
110	355	340	326	205	195	188	171	156	118	113
132	418	400	383	242	230	222	202	184	140	134
160	509	487	467	295	280	270	245	224	169	162
200	637	609	584	368	350	337	307	280	212	203
250	782	748	717	453	430	414	377	344	261	250
315	983	940	901	568	540	520	473	432	327	313
355	1109	1061	1017	642	610	588	535	488	370	354
400	1255	1200	1150	726	690	665	605	552	418	400
500	1545	1478	1416	895	850	819	745	680	515	493
560	1727	1652	1583	1000	950	916	832	760	576	551
630	1928	1844	1767	1116	1060	1022	929	848	643	615
710	2164	2070	1984	1253	1190	1147	1043	952	721	690
800	2446	2340	2243	1417	1346	1297	1179	1076	815	780
900	2760	2640	2530	1598	1518	1463	1330	1214	920	880
1000	3042	2910	2789	1761	1673	1613	1466	1339	1014	970

AR General Technical Data

Contents
General Technical Data
Standards 3/2
Terms and Definitions 3/3
Utilization Categories 3/4
Climatic Withstand 3/6

General Technical Data

Specifications, Standards and Certifying

Definitions

ABB low voltage devices are developed and manufactured according to the rules set out in IEC international publications and in EN European specifications.
In most countries, low voltage apparatus is built according to such rules with checking being the responsibility of the manufacturer. The devices are therefore not subject to any further obligation for approval. A test report from our laboratories can be remitted to our customers, on request, for presentation to different qualified local organizations.

Prescriptions and Standards

- International Specifications

The International Electrotechnical Commission, IEC, which is part of the International Standards Organization, ISO, publishes IEC publications which act as a basis for the world market.

- European Specifications and National Specifications

The European Committee for Electrotechnical Standardization (CENELEC), which groups together 18 European countries, publishes EN standards. These European standards differ very little from IEC international standards and have similar numbering.
The same applies for national standards which use, without exception, the same numbering and reproduce the texts of these unified standards in their entirety. Contradicting national standards are withdrawn.

- European Directives

The guarantee of the free movement of goods within the European Community means that any regulatory differences between member states have been eliminated. The European directives set up common rules that are included in the legislation of each state while contradictory regulations are cancelled.
Three directives are essential:

- Low Voltage Directive $73 / 23 / E E C$ concerns electrical equipment from 0 to 1000 V a.c. and from 75 to 1500 V d.c.

This specifies that compliance with the requirements that it sets out is acquired if the equipment conforms to the standards harmonized on a European level: EN 60947-1 and EN 60947-4-1 for contactors.

- Machines Directive 89/392/EEC for safety specifications of machines and equipment on complete machines. Machines bearing the CE mark comply with these specifications.
- Electromagnetic Compatibility Directive 89/336/EEC which concerns all devices able to create electromagnetic disturbance.

Standard EN 60947-4-1 does not set out any requirement concerning the level of emission or immunity of contactors which do not have any active electronic components. Owing to this fact, compliance with standard EN 60947-4-1 meets the requirements for CE marking, with respect to this directive.

CE Marking :

CE marking must not be confused with a quality label.
CE marking is proof of conformity with the European Directives concerning the product.
CE marking is part of an administrative procedure and guarantees free movement of the product within the European Community.

- International Standards

IEC 60947-1	Low-voltage switchgear and controlgear - Part 1: General rules.
IEC 60947-4-1	Low-voltage switchgear and controlgear - Part 4: Contactors and motor starters.
Section 1: Electromechanical contactors and motor starters.	

- European Standards

EN 60947-1	Low-voltage switchgear and controlgear - Part 1: General rules.
EN 60947-4-1	Low-voltage switchgear and controlgear - Part 4: Contactors and motor starters.
Section 1: Electromechanical contactors and motor starters.	

Test Certifying Organizations

ABB Control is a member of the ASEFA (Association of French Test Stations for Electrical Apparatus) whose platforms are accredited by COFRAC (national test network).
This independent organization is authorized to deliver certificates of testing and conformity with standards, especially IEC. ASEFA is one of the signatories of the LOVAG (Low Voltage Agreement Group) agreement which ensures reciprocal recognition between the main European certifying organizations for low voltage electrical tests by delivering certificates of LOVAG conformity.

General Technical Data
 Terms and Technical Definitions

Terminology

Altitude

Characterizes the place of use. It is expressed in metres above sea level.

Circuits

- Auxiliary circuit:

All the conductive parts of a contactor designed to be inserted in a different circuit from the main circuit and the contactor control circuits.

- Control circuit:

All the conductive parts of a contactor (other than the main circuit and the auxiliary circuit) used to control the contactor's closing operation or opening operation or both.

- Main circuit:

All the conductive parts of a contactor designed to be inserted in the circuit that it controls.

Rated Operational Current $I_{\text {e }}$

Current rated by the manufacturer. It is mainly based on the rated operational voltage \mathbf{U}_{e}, the rated frequency, the utilization category, the rated duty and the type of protective enclosure, if necessary.

Conventional Free Air Thermal Current $\mathrm{I}_{\text {th }}$

Current that the contactor can withstand in free air for a duty time of 8 hours without the temperature rise of its various parts exceeding the maximum values given by the standard.

Electrical Durability

Number of on-load operating cycles that the contactor is able to carry out. It depends on the utilization category.

Mechanical Durability

Number of no-current operating cycles that a contactor is able to carry out.

Switching Frequency

Number of switching cycles per hour.

Coil Operating Limits

Expressed in multiples of the nominal control circuit voltage $\mathbf{U}_{\mathbf{c}}$ for the upper and lower limits.

Mounting Position

Comply with the manufacturer's instructions.

Rated Breaking or Making Capacity

Root mean square value (r.m.s.) of the current that the contactor is able to break or make at a given voltage according to the conditions specified by standards and for a given utilization category.

Ambient Temperature

Air temperature close to the contactor.

Time

- Time constant :

Ratio of the inductance to the resistance ($L / R=\mathrm{mH} / \Omega=\mathrm{ms}$).

- Short-time withstand current $\mathbf{I}_{\text {cw }}$:

Current that the contactor is able to withstand in closed position for a short time interval and in specified conditions.

- Minimum switching time:

This is the minimum closing or opening order time necessary for the contactor to reach complete closing or opening.

- Closing time:

Time interval between the beginning of the closing operation and the instant the contacts touch on all the poles.

- Opening time:

Time interval between the specified starting instant of the opening operation and the instant the arcing contacts separate on all the poles.

Rated Control Voltage $\mathbf{U}_{\mathbf{c}}$

Control voltage value for which the control circuit is sized.

Rated Operational Voltage $\mathbf{U}_{\mathbf{e}}$

Voltage to which the contactor's utilization characteristics refer. In three-phase it is the phase-to-phase voltage.

Rated Insulation Voltage $\mathbf{U}_{\mathbf{i}}$

Reference voltage for dielectric tests and creepage distances.
Rated Impulse Withstand Voltage $\mathbf{U}_{\text {imp }}$
Peak value of an impulse voltage, having a specified form and polarity, which does not cause breakdown in specific test conditions.

Shock Withstand

Requirement for vehicles, crane drives, installations on board ships and plug-in equipment. The contactors must not change position and the overload relays must not trip.

Resistance to Vibrations

Requirements for vehicles, boats and other means of transport. For the specified vibration amplitude and frequency values the device must remain able to operate.

General Technical Data
 Utilization Categories

Standards

IEC publications 60941-1, 60947-4-1 and 60947-5-1 should be referred to on an international level with respect to contactors. A contactor's duty is characterised by the utilization category together with the rated operational voltage and current indicated.

- Utilization Categories for the Auxiliary Contacts According to IEC 60947-5-1

Alternating current: AC-12 Control of resistive loads and static loads with opto-coupler isolation.
AC-13 Control of static loads with transformer isolation.
AC-14 Control of weak electromagnetic loads ($\leq 72 \mathrm{VA}$).
AC-15 Control of electromagnetic loads (> 72 VA).
Direct current: DC-12 Control of resistive loads and static loads with opto-coupler isolation.
DC-13 Control of d.c. electromagnets.
DC-14 Control of d.c. electromagnets having economy resistors.
In fact some applications, and the specific criteria characterizing the various loads controlled by contactors, may modify the utilization characteristics of the contactors.

d.c. Power Circuit Switching

Arc suppression is more difficult in direct current than in alternating current and this is all the more true the higher the circuit time constant which is why it is necessary to connect several poles in series in order to improve breaking conditions. (see page $\mathbf{2} / 24$.)

a.c. High Current Circuit Switching

Possibility of increasing performances by connecting poles in parallel. (Please consult us.)
Influence of the Length of the Conductors used in the Contactor Control Circuit
According to the operational voltages and the coil consumption, take line resistances and capacitances into consideration, for the length and the cross-sectional of the conductors.

General Technical Data

Utilization Categories

Making and Breaking Conditions for Utilization Categories

Utilization category	Durability test conditions						Occasional operation					
	Making conditions			Breaking conditions			Making conditions			Breaking conditions		
	$\overline{1 / 2}$	$\mathbf{U} / \mathbf{U}_{\mathbf{e}}$	$\begin{aligned} & \text { Cos. } \varphi \\ & \text { or } \\ & \text { L/R (ms) } \end{aligned}$	I/Ie	$\mathbf{U} / \mathbf{U}_{\text {e }}$	$\begin{aligned} & \hline \text { Cos. } \varphi \\ & \text { or } \\ & \text { L/R (ms) } \end{aligned}$	$\mathrm{I}_{\mathrm{c}} / \mathrm{I}_{\text {e }}$	$\mathbf{U}_{\mathbf{r}} / \mathbf{U}_{\text {e }}$	$\begin{aligned} & \text { Cos. } \varphi \\ & \text { or } \\ & \text { L/R (ms) } \end{aligned}$	$\mathrm{I}_{\mathrm{c}} / \mathrm{I}_{\text {e }}$	$\mathbf{U r}_{\mathbf{r}} / \mathbf{U}_{\mathrm{e}}$	Cos. φ or L/R (ms)
Contactors for a.c. circuit switching												
AC-1	1	1	0.95	1	1	0.95	1.5	1.05	0.8	1.5	1.05	0.8
AC-2	2.5	1	0.65	2.5	1	0.65	4	1.05	0.65	4	1.05	0.65
AC-3 $\quad \mathrm{I}_{\mathrm{e}} \leq 100 \mathrm{~A}$	6	1	0.35	1	0.17	0.35	10	1.05	0.45	8	1.05	0.45
$\mathrm{I}_{\mathrm{e}}>100 \mathrm{~A}$	6	1	0.35	1	0.17	0.35	10	1.05	0.35	8	1.05	0.35
AC-4 $\quad \mathrm{I}_{\mathrm{e}} \leq 100 \mathrm{~A}$	6	1	0.35	6	1	0.35	12	1.05	0.45	10	1.05	0.45
$I_{e}>100 \mathrm{~A}$	6	1	0.35	6	1	0.35	12	1.05	0.35	10	1.05	0.35
Contactors for d.c. circuit switching												
DC-1	1	1	1	1	1	1	1.5	1.05	1	1.5	1.05	1
DC-3	2.5	1	2	2.5	1	2	4	1.05	2.5	4	1.05	2.5
DC-5	2.5	1	7.5	2.5	1	7.5	4	1.05	15	4	1.05	15

Auxiliary contacts for a.c. circuit switching

AC-14	($\leq 72 \mathrm{VA}$)	-	-	-	-	-	-
AC-15	(> 72 VA)	10	1	0.7	1	1	0.4

6	1.1	0.7			
10	1.1	0.3		1.1	0.7

Auxiliary contacts for d.c. circuit switching

	Standard operation						Occasional operation					
	Making conditions			Breaking conditions			Making conditions			Breaking conditions		
	I/I ${ }_{\text {e }}$	$\mathbf{U} / \mathbf{U}_{\text {e }}$	$\mathrm{T}_{0.95}$	I/I	$\mathbf{U} / \mathbf{U}_{\text {e }}$	$\mathrm{T}_{0.95}$	I/I ${ }_{\text {e }}$	$\mathbf{U} / \mathbf{U}_{\text {e }}$	$\mathrm{T}_{0.95}$	I/I	$\mathbf{U} / \mathbf{U}_{\text {e }}$	$\mathrm{T}_{0.95}$
DC-13	1	1	$6 \mathrm{P}_{(1)}$	1	1	$6 \mathrm{P}_{(1)}$	1.1	1.1	$6 \mathrm{P}_{(1)}$	1.1	1.1	$6 \mathrm{P}(1)$
DC-14	-	-	-	-	-	-	10	1.1	15 ms	10	1.1	15 ms

(1) The value " $6 \times \mathrm{P}$ " is the result of an empirical relation which is estimated to represent most d.c. magnetic loads up to the highest limit of $\mathrm{P}=50 \mathrm{~W}$ ($6 \times \mathrm{P}=300 \mathrm{~ms}$). It is accepted that loads having drawn energy above 50 W are made up of weaker loads in parallel. As a consequence, the 300 ms value must form the highest limit whatever the value of the power drawn.

Key:
\mathbf{U} (I) = applied voltage (current)
$\mathbf{U}_{\mathbf{r}} \quad=$ recovery voltage
L/R = test circuit time constant
$\mathbf{U}_{\mathbf{e}}\left(\mathbf{l}_{\mathrm{e}}\right)=$ rated operational voltage (current)
$\mathbf{I}_{\mathbf{c}} \quad=$ making and breaking current expressed in d.c. or in a.c. like the r.m.s. value of the symmetrical components
$\mathbf{T}_{0.95}=$ time required to reach 95% of the current in steady-state conditions, expressed in milliseconds

General Technical Data

Climatic Withstand of Devices

General

The life time and dependability of devices are mainly influenced by a series of climatic factors which cause their corrosion.
In practice, besides climatic conditions, there are other factors which may damage equipment such as fungi, insects (termites), dust, work site dirt and aggressive environment (salty or sulphurous atmosphere, etc.) which can often only be identified at the place of installation.
The entrance of dust, insects, dirt, etc. in devices may be prevented if the appropriate degree of protection according to IEC 60529 is chosen.
ABB contactors have been used for many years in the most varied countries, with hot and humid climates for example: Brazil, Indonesia, India etc. Experience has shown that ABB devices can be used in most countries throughout the world.
The climate of the country in which the device is installed is not the determining choice factor.
Account must be taken of:

- the immediate environment of the devices (sheltered, ventilated, temperature),
- the aggressivity of the immediate atmosphere at the place of installation,
- the length and frequency of non operating periods.

In the case of frequent condensation (i.e. the formation of steam caused by rapid changes in temperature), heating resistors must be installed in cubicles (100 to 250 W per m^{3} of enclosure).
The table below gives the cases where heating is necessary.

Environment		Operating conditions	Climate	Internal heating of enclosure
Inside premises	No running water	Continuous or not	All climates	Without
	No condensation			
	With running water	Continuous	All climates	Without
		Frequent or long	Temperate	Without
		stops	Tropical	With
Outside, sheltered	No running water no condensation	Continuous or not	Temperate	Without
			Tropical	With
Outside or by the seaside	With running water	Continuous	All climates	Without
		Frequent or long	Temperate	Without
		stops	Tropical	With

- The standard \mathbf{R} series contactors are suitable for industrial environment and tropical atmospheres. Special versions can be supplied, on request, for very corrosive atmospheres.

1SBC104113C0201

Notes

Wiring Diagrams for Control Circuits

Contents

Terminal Marking and Positioning .. 4/2
Wiring Diagrams for Control Circuits... 4/3 to 4/4

R.. Series Contactors

Terminal Marking and Positioning

1400 ... 2100 A Ratings

Main poles	N.O. main poles are respectively marked 1-2, 3-4, 5-6, 7-8. For N.C. main poles the letter \mathbf{R} precedes the figures.								
Coil	a.c. coil: the terminals are marked A1 and A2. d.c. coil: the terminals are marked $\mathbf{A 1}(-)$ and $\mathbf{A} 2(+)$								
CA 15.. aux. contact No 1	CA 15-O (N.C.) contact intended for electrical interlocking. Terminal marking: 21-22								
CA 15.. aux. contact No 2	CA 15-F (N.O.) contact intended for "hold-in" function. Terminal marking: 13-14								
CA 15.. extra aux. contacts	No "n"	No 10	No 9	No 8	No 7	No 6	No 5	No 4	No 3
CA 15-F (N.O.)	..3)		${ }_{164}^{163}{ }^{1}$			${ }_{134}^{133}$	${ }_{124}^{123}$	${ }_{114}^{113}$	${ }_{104}^{103}{ }^{1}$
or CA 15-O (N.C.)		171 172	${ }_{162}^{161} 4$		$\overbrace{104}^{103}$	$\left.\begin{array}{l} { }^{131} \\ { }_{132} \end{array}\right\}$	${ }_{122}^{121} 4$	${ }_{112}^{111} 4$	$\left.\begin{array}{l} { }^{101} \\ 102 \end{array}\right\}$
	The CA 15.. auxiliary contacts are fitted from the right, first on the auxiliary frame and next on the main frame of the contactor, acc. to this marking. Contactors equipped with RR or RE electro-magnet: contact No 3 is a CA 15-O (N.C.) type intended for insertion of the economy resistor and wired in factory. Terminal marking: 15-16								
TP timed auxiliary contacts block	 The TP.. timed auxiliary contact block is mounted on the auxiliary frame and takes space of 3 CA 15.. auxiliary contacts.								

R.. Series Contactors

Wiring Diagrams

Control by 2 Impulse Pushbuttons and Hold-in Contact

IORR, IORR-MT, IORR-CC

Control by Switch

IORR, IORR-MT, IORR-CC
Note: to remove the factory wired strap 14-16

IORE,
IORE-MT, IORE-CC

IORE,
IORE-MT,
IORE-CC
Note : to remove the factory wired strap 14-16

R.. Series Mechanically Latched Contactors
 Wiring Diagrams

Control by Switch

Notes:
If the closing coil voltage and the tripping coil voltage are different remove the strap between terminals 5 and 7 .

IORE-AME

IORE-MT-AME
IORE-CC-AME

$\mathrm{KM}=$ Closing coil
$\mathrm{KL}=$ Tripping coil
KA1 = Contactor relay
KA2 = Delay timer
$\mathrm{Re}=$ Economy resistor
Supply between 4 and 5
Closing between 1 and 3
Tripping between 1 and 2
For the contactors equipped with coils for control voltage $>\mathbf{2 5 0} \mathrm{V}$ use a special wiring diagram. Please consult us.

KM = Closing coil
$\mathrm{KL}=$ Tripping coil
$K A 1=$ Delay timer
$\mathrm{KA} 2=$ Timed contactor relay
Re = Economy resistor
Supply between 9 and 10
Closing between 1 and 3
Tripping between 1 and 2

Note:

If the closing coil voltage and the tripping coil voltage are different, please consult us.

For the contactors equipped with coils for control voltage $\mathbf{> 2 5 0}$ V use a special diagram. Please consult us.

IORR-AME
IORR-MT-AME
IORR-CC-AME

Notes

Dimensions

Fixing - Dimensions
Clearing Distances
Connecting
Contents
R.. Series Contactors Ratings
IORR, IORE
IORR, IORE 1400 to 2100 A 1400 to 2100 A 5/2 5/2
IORR..-MT, IORE..-MT 1400 to 2100 A 5/3
IORR..-CC, IORE..-CC 1000 to 2100 A 5/3

IORR.., IORE.., LORR.., LORE.. Types
 Ratings 1400 ... 2100 A

Dimensions (in mm)

Terminal plate details

1400 A

1700 A

2100 A

Terminal plate thickness for 1400 A to 2100 A ratings: top terminal plates $=10 \mathrm{~mm}$, bottom terminal plates $=12 \mathrm{~mm}$

Ratings (A)	Number of poles	A	B	$\underset{(1)}{\mathbf{D}}$	D1	D2	D3	H	$\underset{(1)}{\text { I }}$	11	$\underset{(1)}{\mathbf{M}}$	M1	N	T	$\begin{gathered} \mathbf{Y} \\ \text { (1) } \end{gathered}$	Y1
1400	1	85	-	325	260	75	77	70	108	98	228	165	100	-	400	280
	2	85	140	325	260	75	77	70	108	98	228	165	100	-	400	280
	3	85	120	325	260	75	77	70	108	98	228	165	100	-	400	280
1700	1	85	-	325	260	75	77	84	108	112	258	165	125	-	425	280
	2	85	140	325	260	75	77	84	108	112	258	165	125	-	425	280
	3	85	120	325	260	75	77	84	108	112	258	165	125	-	425	280
2100	1	85	-	325	260	75	77	84	108	112	258	165	125	-	425	280
	2	85	140	325	260	75	77	84	108	112	258	165	125	-	425	280
	3	85	120	325	260	75	77	84	108	112	258	165	125	-	425	280

[^9]Dimensions (in mm)

Terminal plate details

Terminal plate thickness for $\mathbf{1 0 0 0} \mathbf{A}$ to 2100 A ratings: top terminal plates $=10 \mathrm{~mm}$, bottom terminal plates $=12 \mathrm{~mm}$

Ratings (A)	Number of poles	Fixing dimension - F acc. to number of extra CA 15.. auxiliary contacts:													Fixing holes \varnothing
		0	1	2	3	4	5	6	7	8	9	10			
1000	1	285	285	285	345	345	345	345	345	345	345				4×13
	2	345	345	345	385	385	385	385	445	445	445				
	3	445	445	445	445	445	445	445	540	540	540				
1400	1	285	285	285	345	345	345	345	385	385	385				4×13
	2	385	385	385	445	445	445	445	540	540	540				
	3	540	540	540	635	635	635	635	635	635	635				
1700	1	345	345	345	345	345	345	345	385	385	385				4×13
	2	445	445	445	540	540	540	540	540	540	540				
	3	540	540	540	635	635	635	635	635	635	635				
2100	1	345	345	345	345	345	345	345	385	385	385				4×13
	2	445	445	445	540	540	540	540	540	540	540				
	3	540	540	540	635	635	635	635	635	635	635				
\square Dimensions - \square		Clearing distances - \square Connecting													
Ratings (A)	Number of poles	A	B	D	-	D3	H	I	11	M	-	N	Y	-	-
1000	1	60	-	325	76	77	70	108	175	195		90	375	-	
	2	60	90	325	76	77	70	108	175	195		90	375	-	
	3	60	80	325	- 76	77	70	108	175	195		90	375	-	
1400	1	80	-	325	76	77	70	108	175	258		100	425	-	
	2	80	100	325	76	77	70	108	175	258		100	425	-	
	3	80	120	325	- 76	77	70	108	175	258		100	425	-	
1700	1	85	-	325	89	77	84	108	189	288		125	450	-	
	2	85	140	325	89	77	84	108	189	288		125	450	-	
	3	85	120	325	89	77	84	108	189	288		125	450	-	
2100	1	85	-	325	89	77	84	108	189	288		125	450	-	
	2	85	140	325	89	77	84	108	189	288		125	450	-	
	3	85	120	325	- 89	77	84	108	189	288		125	450	-	

ABB France

Automation Products Division
Export Department
10, rue Ampère Z.I. - B.P. 114
F-69685 Chassieu cedex / France
Tel: +33 (0)4 72221722
Fax: +33 (0)4 72221935

[^0]: >> Detailed Description..pages 2/3 ... 2/5

[^1]: Notes:

 - Additions which do not increase the fixing centers of the contactor can be ordered separately and mounted by the user.

 Variations which do affect the contactor features e.g. the fixing centers, must be carried out in our works (see page 2/7 and section 5 for "Dimensions").

[^2]: >> Technical Data ..

[^3]: >> Technical Data (except mechanical durability and electro-magnet)equivalent to those on pages 2/17 ... 2/19
 >> Electro-magnet Characteristics please consult us
 >> Terminal Marking and Positioning section 4

[^4]: Note: These characteristics are suitable for AME contactor versions (except for mechanical durability $=0.2$ millions of operating cycles).

[^5]: Note: These characteristics are suitable for MT-AME contactor versions.

[^6]: Note: These characteristics are suitable for MT-AME contactor versions (except for mechanical durability $=0.2$ millions of operating cycles).

[^7]: Note: These characteristics are suitable for AME contactor versions.

[^8]: >> Auxiliary Contact Allocation.

[^9]: (1) LORR.., LORE.. types: poles are not equipped with arc chutes. Use D1 dimension instead of D, M1 instead of M, Y1 instead of Y, I dim. is not applicable.

