Miniature Circuit Breakers (MCB)

Mounting method:

- Snap-on fastening on DIN-rail to EN 50022 possible in all standard distribution panels.
- Any mounting position possible

Applications:

Power supply of domestic and utility buildings as well as industrial installations.

Designation	Article-No.
20 A	
MCB D20-1	XX 915424
MCB D20-1+N	XX 915454
MCB D20-2	XX 915484
MCB D20-3	XX 915524
MCB D20-3+N	XX 915554
MCB D20-4	XX 915584
25 A	
MCB D25-1	XX 915425
MCB D25-1+N	XX 915455
MCB D25-2	XX 915485
MCB D25-3	XX 915525
MCB D25-3+N	XX 915555
MCB D25-4	XX 915585
32 A	
MCB D32-1	XX 915426
MCB D32-1+N	XX 915456
MCB D32-2	XX 915486
MCB D32-3	XX 915526
MCB D32-3+N	XX 915556
MCB D32-4	XX 915586
40 A	
MCB D40-1	XX 915427
MCB D40-2	XX 915487
MCB D40-3	XX 915527
MCB D40-4	XX 915587
63 A	
MCB D63-1	XX 915429
MCB D63-2	XX 915499
MCB D63-3	XX 915529
MCB D63-3+N	XX 915559
MCB D63-4	XX 915589

Auxiliary or Fault Signalling Switch DHi 1

Designation	Article-No.
DHi 1	XX 913998

Function:

The DHi 1 can be retrofitted as an auxiliary switch, or fault signalling switch, to a miniature circuit-breaker of the DLS 5 model range. With the aid of other outputs (buzzer, indicator lamp etc.), or via the Dupline bus system, it thus enables the operating status of miniature circuit-breakers to be indicated. The function setting is via the setting facility on the DHi 1.
Auxiliary switch
Switches upon connection and disconnection of the miniature circuit-breaker

Fault signalling switch
Switches only when the MCB is tripped (central position)

Features:

- Auxiliary switch or, alternatively, fault signalling function
- Retrofittable
- Compact design
- 1 C-O contact and 1 NCC

Mounting method:

- Clamped on the left side of the miniature circuit-breaker
- Snap-fastening on DIN-rail to EN 50022 in all standard distribution panels
- Any mounting position possible

Applications:

Operating status enquiry of power supplies in domestic and utility buildings as well as industrial installations.

Notes:

The auxiliary switch does not affect the functioning of the miniature circuit-breaker.

Restart Locking Facility WES

for DFS 2 and DFS 4 RCCBs and for DLS 5 MCBs

Function:

To avoid reconnection during maintenance and repair work.
Use of the locking facility rules out all possibility of accidental connection of mains voltage, e.g. by unauthorised persons.

Features:

- Quickly fitted, universally applicable
- Without lock
- Dimensions: $17 \mathrm{~mm} \times 29 \mathrm{~mm} \times 3.5 \mathrm{~mm}$
- Material: Stainless steel

Applications:

Power supply of domestic and utility buildings as well as industrial installations.

Accessories:

- Standard padlock (shackle dia. 3.5 mm ; not supplied with the device)

Contact Protection Cover

Function:

To provide a touch-proof covering and to secure the double-deck terminals of miniature circuit-breakers DLS 5.

Features:

- Accessory specifically designed for system construction
- Material: polycarbonate

Applications:

Power supply of utility buildings and industrial installations.

Remote Actuator DFA

for Residual Current and Miniature Circuit-Breakers

Designation	Article-No.
DFA	XX 100101

Function:

The DFA remote actuator is a retrofittable device for the remote control and monitoring of residual current and miniature circuit-breakers of model ranges DFS 2 / DFS 4 and DLS 5. With the aid of the DFA these can be switched on and off remotely. In addition, with residual current circuit-breakers there is also the possibility of remote testing by means of residual current simulation. The actual switching position of the circuit-breakers connected, tripped or disconnected - can be indicated by integrated relay switching contacts.
The actuation function and the remote tripping function of the DFA can be de-activated with the aid of a rotary switch on the enclosure cover. This ensures that it cannot be accidentally activated from a remote location, e.g. during maintenance work at the electrical downstream installation. There is also the option of operating the DFA in automatic mode, whereby 15 seconds after tripping a single attempt at reconnection will be instigated automatically.
The optionally available DFA-DI interface offers the possibility of controlling and monitoring the protective devices via the Dupline bus system.
The DFA can be operated either with a 24 V AC or 24 V DC power supply.

Features:

- Retrofittable
- For 2- and 4-pole residual current circuit-breakers DFS 2 / DFS 4
- For 1- to 3-pole miniature circuit-breakers DLS 5
- For 2- and 4-pole switch disconnectors DHS 2 / DHS 4
- Remote connection and disconnection of miniature circuit-breakers
- Remote connection, remote disconnection and remote test tripping of residual current circuit-breakers with rated residual current
- Feedback of current toggle switch position
- Automatic reconnection selectable
- Dupline bus interface DFA-DI can be retrofitted

Mounting method:

- Clamped on the left side of the residual current or miniature circuit-breaker
- Snap-fastening on DIN-rail to EN 50022 in all standard distribution panels
- Any mounting position possible

Applications:

Business and industrial installations with remote distribution centres such as e.g.:

- Agricultural establishments
- Wind turbines
- Pumping stations
- Sewage works
- Telecommunication stations
- Radio and transmission stations

Notes:

The DFA does not affect the functioning of the residual current or miniature circuit-breakers.

Accessories:

- RK 24 power supply unit
- DFA-DI Dupline interface board

Switch Disconnectors DHS

Designation	Article-No.
$\mathbf{6 3 ~ A}$	
DHS2-63 2-pole	XX 900005
DHS4-63 4-pole	XX 900007
$\mathbf{8 0}$ A	
DHS2-80 2-pole	XX 900006
DHS4-80 4-pole	XX 900008
100 A	XX 900001
DHS2-100 2-pole	XX 900003
DHS4-100 4-pole	
$\mathbf{1 2 5 ~ A ~}$	XX 900002
DHS2-125 2-pole	XX 900004
DHS4-125 4-pole	

Function:

The two-, three- or four-pole DHS switch-disconnectors are used as main switches at the input of system distributions.
They enable the safe disconnection of the distribution and of the downstream installation from the power supply even when subject to load and overload. In some areas the electricity companies make their installation mandatory in their technical connection requirements.

Features:

- Rated currents from 63 A to 125 A
- Highly short-circuit proof and high switching capacity
- Double-deck terminals for large wire diameter and rail at both ends
- Switch position indication
- View panel for labels

Mounting method:

- Snap-on fastening on DIN-rail to EN 50022 possible in all standard distribution panels.
- Any mounting position possible

Further DIN-Rail Mounted Devices

Applications:

Distributions in widely dispersed power supply nets, e.g. for

- Camping sites
- Marinas
- Allotment sites
- Exhibition grounds
- etc.

Notes:

In pratice the following types are used as main switches in compliance with IEC/EN 60947-3:

- Disconnectors
- Switches and
- Switch-disconnectors.

Disconnectors must fulfil the relevant requirements for a disconnecting function when in the Off position, but in operation only currents of negligible strength need to be switched.
A switch has to switch on and switch off currents in an electric circuit under operating conditions, inc. a specified operational overload. When the switch is in the Off position, no disconnecting function is required. A switch is therefore not suitable for safe disconnection as defined in the international design regulations.
The combination of these two types is the switchdisconnector which encompasses the features of both and can thus be employed universally for the completely safe isolation of installations.

Accessories:

- DFA remote actuator
- DHi 2 auxiliary switch
- KA-DFS 4 terminal cover, sealable
- Reconnection locking facility (WES)

Switch Disconnectors DIS

Designation	Article-No.
16 A	
DIS 16-1	XX 900101
DIS 16-2	XX 900102
DIS 16-3	XX 900103
DIS 16-3.N	XX 900104
DIS 16-4	XX 900125
20 A	
DIS 20-1	XX 900105
DIS 20-2	XX 900106
DIS 20-3	XX 900107
DIS 20-3.N	XX 900108
DIS 20-4	XX 900126
25 A	
DIS 25-1	XX 900136
DIS 25-2	XX 900137
DIS 25-3	XX 900138
DIS 25-3.N	XX 900139
DIS 25-4	XX 900140
32 A	
DIS 32-1	XX 900109
DIS 32-2	XX 900110
DIS 32-3	XX 900111
DIS 32-3.N	XX 900112
DIS 32-4	XX 900127
40 A	
DIS 40-1	XX 900113
DIS 40-2	XX 900114
DIS 40-3	XX 900115
DIS 40-3.N	XX 900116
DIS 40-4	XX 900128
63 A	
DIS 63-1	XX 900117
DIS 63-2	XX 900118
DIS 63-3	XX 900119
DIS 63-3.N	XX 900120
DIS 63-4	XX 900129

Function:

The two-, three- or four-pole switch-disconnectors are used as main switches at the input of system distributions.
They enable the safe disconnection of the distribution and of the downstream installation from the power supply even when subject to load and overload. In certain areas the technical connection requirements of the relevant electricity companies make their installation mandatory.

Features:

- Modular construction
- Wide range of rated currents from 16 A to 100 A
- Highly short-circuit proof and high switching capacity
- Double-deck terminals for large wire diameter and rail at both ends
- Switch position indication
- Conforms to international appliance design regulations IEC 60947-3, EN 60947-3 and BS 5419/77

Mounting method:

- Snap-on fastening on DIN-rail to EN 50022 possible in all standard distribution panels.
- Any mounting position possible

Applications:

Main distributions in widely dispersed power supply nets, e.g. for

- Camping sites
- Marinas
- Allotment sites
- Exhibition grounds
- etc.

Further DIN-Rail Mounted Devices

Notes:

In pratice the following types are used as main switches in compliance with IEC/EN 60947-3:

- Disconnectors
- Switches and
- Switch-disconnectors.

Disconnectors must fulfil the relevant requirements for a disconnecting function when in the Off position, but in operation only currents of negligible strength need to be switched.
A switch has to switch on and switch off currents in an electric circuit under operating conditions, inc. a specified operational overload. When the switch is in the Off position, no disconnecting function is required. A switch is therefore not suitable for safe disconnection as defined in the international design regulations.
The combination of these two types is the switch-disconnector which encompasses the features of both and can thus be employed universally for the completely safe isolation of installations.

Accessories:

- Reconnection locking facility WES

Designation	Article-No.
80 A	
DIS 80-1	XX 900131
DIS 80-2	XX 900132
DIS 80-3	XX 900133
DIS 80-3.N	XX 900135
DIS 80-4	XX 900134
100 A	
DIS 100-1	XX 900121
DIS 100-2	XX 900122
DIS 100-3	XX 900123
DIS 100-3.N	XX 900124
DIS 100-4	XX 900130

Electronic Single-Phase AC Meter RWZ 12.11.13 / RWZ 12.11.14

Designation	Article-No.
25 A	
RWZ 12 11.13 230V 25A	XX 980690
RWZ 12 11.13 230V 25A, certified	XX 980691
32 A	
RWZ 12 11.14 230V 32A	XX 980692
RWZ 12 11.14 230V 32A, certified	XX 980693

Function:

This model range replaces the classic electromechanical electricity meter. The meter count with its 6 -digit display is easy to read. An S0-port provides the necessary counter pulses in energy management systems. Due to its narrow design (1 module) the RWZ product range can be installed in any distribution panel with DIN-rail.

Features:

- Counter with 5 digits and one red decimal point digit
- Also available with PTB authorization for cash accounting purposes
- SO-interface as per DIN 43864 for energy management systems
- Pulse factor for opto-coupler output $2000 \mathrm{i} / \mathrm{kWh}$
- Accuracy class 1
- 1 module width
- Consumption less than 0.5 W
- Conforms to IEC/EN 61036

Mounting method:

- Snap-on fastening on DIN-rail to EN 50022 possible in all standard distribution panels
- Any mounting position possible

Applications:

- Energy management systems
- Camping sites
- Mooring berths
- Other leased facilities

Further DIN-Rail Mounted Devices

Electronic Three-Phase AC Meter RDZ 34.52.41

Function:

This model range replaces the classic electromechanical electricity meter. The meter count with its 6-digit display is easy to read. An S0-port provides the necessary counter pulses in energy management systems.

Features:

- RDZ 34.52.41 230 V / 400 V AC, 5(65) A
- Counter with 5 digits and one red decimal point digit
- SO-interface as per DIN 43864 for energy management systems
- Pulse factor for opto-coupler output $2000 \mathrm{i} / \mathrm{kWh}$
- Accuracy class 1
- 4 module widths
- Conforms to IEC/EN 61036

Mounting method:

- Snap-on fastening on DIN-rail to EN 50022 possible in all

Designation	Article-No.
RDZ 34.52.41	XX 980698

D0 Master Disconnector - Tytan

Designation	Article-No.
2 A pink	
D0 Master Disconnector, 1-pole	XX 980385
D0 Master Disconnector, 3-pole	XX 980391
4 A brown	
D0 Master Disconnector, 1-pole	XX 980386
DO Master Disconnector, 3-pole	XX 980392
6 A green	
D0 Master Disconnector, 1-pole	XX 980387
D0 Master Disconnector, 3-pole	XX 980393
10 A red	
D0 Master Disconnector, 1-pole	XX 980388
D0 Master Disconnector, 3-pole	XX 980394
16 A grey	
D0 Master Disconnector, 1-pole	XX 980389
D0 Master Disconnector, 3-pole	XX 980395
20 A blue	
D0 Master Disconnector, 1-pole	XX 980390
D0 Master Disconnector, 3-pole	XX 980396
25 A yellow	
D0 Master Disconnector, 1-pole	XX 980382
D0 Master Disconnector, 3-pole	XX 980397
35 A black	
D0 Master Disconnector, 1-pole	XX 980381
D0 Master Disconnector, 3-pole	XX 980383
50 A white	
D0 Master Disconnector, 1-pole	XX 980380
D0 Master Disconnector, 3-pole	XX 980384
63 A copper	
D0 Master Disconnector, 1-pole	XX 980086
D0 Master Disconnector, 3-pole	XX 980087

Function:

The Tytan DO master disconnectors work on the same plug-in principle as the familiar HRC cutouts. Correct contact pressure for the fuse insert is set at the factory by means of spring loading; constant minimum resistance contact is thus ensured during entire service life. In contrast to the screw method, the multi-pole D0 master disconnectors are always all-pole disconnected by hand.

Features:

- Extensive range of types
- 1 - 3-pole
- 2 A - 63 A
- without fuses
- with insert
- with fuse carrier
- with mechanical indication
- Little Joule's heat loss
- Suitable for fuses DO 1 and DO 2
- Finger- and back-of-the-hand proof
- Terminal cross-section from $1.5 \mathrm{~mm}^{2}$ to $35 \mathrm{~mm}^{2}$

Mounting method:

- Snap-on fastening on DIN-rail to EN 50022 possible in all standard distribution panels.
- Any mounting position possible

Applications:

Power supply of domestic and utility buildings as well as industrial installations.

Note:

Fuse carriers of the old „screw cap type" are one of the biggest „generators of heat" in distribution boards.
This thermal problem is exacerbated if the carriers are not fully screwed down or if they work loose over time during operation. A loose screw carrier can be the cause of up to 30 watts of preventable energy loss.

Accessories:

- Fuse carrier set with mechanical indication
- Fuse carrier set with blink indicator
- Restart locking facility with cylinder lock
- Restart locking facility with plastic lock
- Also available with fuse monitoring

Technical data
Page 109
Dimensions

Page 117
Page 80-82

Further DIN-Rail Mounted Devices

Empty Housing - Tytan

for DO Master Disconnector

Function:

Empty housing for individual assembly.
The Tytan DO master disconnectors work on the same plug-in principle as the familiar HRC cutouts. Correct contact pressure for the fuse insert is set at the factory by means of spring loading; constant minimum resistance contact is thus ensured during entire service life. In contrast to the screw method, the multi-pole DO master disconnectors are always all-pole disconnected by hand.

There are two types of fuse carriers:

- In the case of fuse carriers with blink indicator, a flashing LED signals the outage of a DO fuse.
- With mechanical indication, it is the same as with the standard screw-in type. A defective fuse can be identified by looking through the window provided.

Features:

- Designed for fitting 2-63A fuse carrier sets either with LED indicator or with mechanical indication
- Extensive range of types
- 1-pole, 1-pole+N, 2-pole, 3-pole, 3-pole+N
- Little Joule's heat loss (0.5 W per current path)
- Suitable for fuses DO 1 and DO 2
- Finger- and back-of-the-hand proof
- Terminal cross-section from $1.5 \mathrm{~mm}^{2}$ to $35 \mathrm{~mm}^{2}$

Mounting method:

- Snap-on fastening on DIN-rail to EN 50022 possible in all standard distribution panels.
- Any mounting position possible

Applications:

Power supply of domestic and utility buildings as well as industrial installations.

Note:

Fuse carriers of the old „screw cap type" are one of the biggest "generators of heat" in distribution boards. This thermal problem is exacerbated if the carriers are not fully screwed down or if they work loose over time during operation. A loose screw carrier can be the cause of up to 30 watts of preventable energy loss.

Accessories:

- Fuse carrier set with mechanical indication
- Fuse carrier set with blink indicator
- Restart locking facility with cylinder lock
- Restart locking facility with plastic lock
- Also available with fuse monitoring

Lockable Empty Housing - Tytan
 \section*{for DO Master Disconnector}

Designation	Article-No.
$\mathbf{1 - 6 3}$ A	
Lockable Empty Housing, 3-pole	XX 980 106
for D0 Master Disconnector	
Lockable Empty Housing, 3-pole+N for DO Master Disconnector	XX 980 107

Function:

Empty housing for individual assembly.
The Tytan D0 master disconnectors work on the same plug-in principle as the familiar HRC cutouts. Correct contact pressure for the fuse insert is set at the factory by means of spring loading; constant minimum resistance contact is thus ensured during entire service life. In contrast to the screw method, the multi-pole D0 master disconnectors are always all-pole disconnected by hand. Some electricity companies make installation of the lockable type mandatory. Such locking can then only be carried out with the electricity company's special key.

Features:

- Designed for fitting 2-63 A fuse carrier sets either with LED indicator or with mechanical indication
- 3-pole, 3-pole+N
- Little Joule's heat loss
- Suitable for fuses DO 1 and DO 2
- Finger- and back-of-the-hand proof
- Terminal cross-section from $1.5 \mathrm{~mm}^{2}$ to $35 \mathrm{~mm}^{2}$

Mounting method:

- Snap-on fastening on DIN-rail to EN 50022 possible in all standard distribution panels.
- Any mounting position possible

Applications:

Power supply of domestic and utility buildings as well as industrial installations.

Note:

Fuse carriers of the old "screw cap type" are one of the biggest "generators of heat" in distribution boards. This thermal problem is exacerbated if the carriers are not fully screwed down or if they work loose over time during operation. A loose screw carrier can be the cause of up to 30 watts of preventable energy loss.

Accessories:

- Fuse carrier set with mechanical indication
- Fuse carrier set with blink indicator
- Restart locking facility with cylinder lock
- Restart locking facility with plastic lock

Technical data
Dimensions

Dimensions	Page 117
Accessories	Page 80-82

Further DIN-Rail Mounted Devices

Empty Housing with Fuse Monitor - Tytan

for DO Master Disconnector

Function:

Empty housing for individual assembly.
The Tytan D0 master disconnectors work on the same plug-in principle as the familiar HRC cutouts. Correct contact pressure for the fuse insert is set at the factory by means of spring loading; constant minimum resistance contact is thus ensured during entire service life. In contrast to the screw method, the multi-pole DO master disconnectors are always all-pole disconnected by hand. The fuse monitoring facility serves as operating mode indicator. In the event of a fuse outage the fuse monitor will send a message to an optional signalling device (buzzer, indicator lamp etc.). The fuse monitor ensures three-phase operation and thus provides additional protection for three-phase motors.

Features:

- Designed for fitting 2-63 A fuse carrier sets either with LED indicator or with mechanical indication
- Extensive range of types
- 1-pole, 1-pole+N, 2-pole, 3-pole, 3-pole+N
- LED green (ON), 1 normally-open contact $250 \mathrm{~V} / 5 \mathrm{~A}$, electrically isolated
- LED red flashing (short-circuit), 2 change-over contacts, 250 V / 5 A each, electrically isolated
- Little Joule's heat loss
- Suitable for fuses DO 1 and DO 2
- Finger- and back-of-the-hand proof
- Terminal cross-section from $1.5 \mathrm{~mm}^{2}$ to $35 \mathrm{~mm}^{2}$

Mounting method:

- Snap-on fastening on DIN-rail to EN 50022 possible in all standard distribution panels.
- Any mounting position possible

Applications:

Power supply of domestic and utility buildings as well as industrial installations.

Note:

Fuse carriers of the old "screw cap type" are one of the biggest "generators of heat" in distribution boards. This thermal problem is exacerbated if the carriers are not fully screwed down or if they work loose over time during operation. A loose screw carrier can be the cause of up to 30 watts of preventable energy loss.

Accessories:

- Fuse carrier set with mechanical indication
- Fuse carrier set with blink indicator
- Restart locking facility with cylinder lock
- Restart locking facility with plastic lock

Designation	Article-No.
$\mathbf{1 - 6 3}$ A	XX 980088
Empty Housing with fuse monitor, 1-pole for D0 Master Disconnector	XX 980 091
Empty Housing with fuse monitor, 1-pole+N for D0 Master Disconnector	XX 980 089
Empty Housing with fuse monitor, 2-pole for D0 Master Disconnector	XX 980 090
Empty Housing with fuse monitor, 3-pole for DO Master Disconnector	XX 980 092
Empty Housing with fuse monitor, 3-pole+N for D0 Master Disconnector	

Technical data	Page 109
	Dimensions
Accessories	Page 117

Designation	Article-No.
2 A	
DO Fuse Carrier Set with mechanical indicator, $3 \times 2 \mathrm{~A}$	XX 980120
4 A	
DO Fuse Carrier Set with mechanical indicator, $3 \times 4 \mathrm{~A}$	XX 980121
6 A	
D0 Fuse Carrier Set with mechanical indicator, $3 \times 6 \mathrm{~A}$	XX 980122
10 A	
D0 Fuse Carrier Set with mechanical indicator, $3 \times 10 \mathrm{~A}$	XX 980123
16 A	
D0 Fuse Carrier Set with mechanical indicator, $3 \times 16 \mathrm{~A}$	XX 980124
20 A	
D0 Fuse Carrier Set with mechanical indicator, $3 \times 20 \mathrm{~A}$	XX 980125
25 A	
DO Fuse Carrier Set with mechanical indicator, $3 \times 25 \mathrm{~A}$	XX 980126
35 A	
DO Fuse Carrier Set with mechanical indicator, $3 \times 35 \mathrm{~A}$	XX 980127
50 A	
DO Fuse Carrier Set with mechanical indicator, $3 \times 50 \mathrm{~A}$	XX 980128
63 A	
D0 Fuse Carrier Set with mechanical indicator, $3 \times 63 \mathrm{~A}$	XX 980129

Function:

This box is designed for fitting into the DO empty housing and contains 3 plug-in holders, 3 inserts and 3 fuses with mechanical indicator. The box can be snap-fastened on to a DIN-rail and thus can also serve as a reserve box.

Features:

- Fits into the Tytan DO empty housing
- Reserve box
- 3 fuses with mechanical indication
- 3 inserts
- 3 plug-in carriers
- 2-63 A, colour-coded

Mounting method:

- Snap-on fastening on DIN-rail to EN 50022 possible in all standard distribution panels.

Applications:

Power supply of domestic and utility buildings as well as industrial installations.

Technical data
Page 109
Dimensions
Page 117

D0 Fuse Carrier Set - Tytan

with Blink Indicator

Function

This box is designed for fitting into the D0 empty housing and contains 3 plug-in holders, 3 inserts and 3 fuses with blink indicator. The flashing LED signals the outage of a DO fuse. The box can be snap-fastened on to a DIN-rail and thus can also serve as a reserve box.

Features:

- Fits into the Tytan DO empty housing
- Reserve box
- 3 fuses with flashing indicator
- 3 inserts
- 3 plug-in carriers
- 2-63 A, colour-coded

Mounting method:

Snap-on fastening on DIN-rail to EN50022 possible in all standard distribution panels.

Applications:

Power supply of domestic and utility buildings as well as industrial installations.

Designation	Article-No.
1 A	
D0 Fuse Carrier Set with blink indicator, $3 \times 1 \mathrm{~A}$	XX 980109
2 A	
D0 Fuse Carrier Set with blink indicator, $3 \times 2 \mathrm{~A}$	XX 980110
4 A	
D0 Fuse Carrier Set with blink indicator, $3 \times 4 \mathrm{~A}$	XX 980111
6 A	
DO Fuse Carrier Set with blink indicator, $3 \times 6 \mathrm{~A}$	XX 980112
10 A	
D0 Fuse Carrier Set with blink indicator, $3 \times 10 \mathrm{~A}$	XX 980113
16 A	
D0 Fuse Carrier Set with blink indicator, $3 \times 16 \mathrm{~A}$	XX 980114
20 A	
D0 Fuse Carrier Set with blink indicator, $3 \times 20 \mathrm{~A}$	XX 980115
25 A	
D0 Fuse Carrier Set with blink indicator, $3 \times 25 \mathrm{~A}$	XX 980116
35 A	
D0 Fuse Carrier Set with blink indicator, 3x35A	XX 980117
50 A	
DO Fuse Carrier Set with blink indicator, $3 \times 50 \mathrm{~A}$	XX 980118
63 A	
D0 Fuse Carrier Set with blink indicator, $3 \times 63 \mathrm{~A}$	XX 980119

with Cylinder Lock/Plastic Lock

Designation	Article-No.
D0 Restart Locking Facility with Cylinder Lock, 5A5, black	XX 980 130
D0 Restart Locking Facility with Cylinder Lock, 5A4, blue	XX 980 131
D0 Restart Locking Facility with Cylinder Lock, 5A3, green	XX 980 132
D0 Restart Locking Facility with Cylinder Lock, 5A1, red	XX 980 133
D0 Restart Locking Facility with Cylinder Lock, 5A2, yellow	XX 980 134

Designation	Article-No.
D0 Restart Locking Facility with Plastic Lock, black	XX 980 135
D0 Restart Locking Facility with Plastic Lock, blue	XX 980 136
D0 Restart Locking Facility with Plastic Lock, green	XX 980 137
D0 Restart Locking Facility with Plastic Lock, yellow	XX 980 138
D0 Restart Locking Facility with Plastic Lock, red	XX 980 139

Function:

For securing the installation against restoring power when carrying out maintenance or repair work.
Setting the lock reliably prevents the accidental reconnection of mains voltage with the Tytan fuse disconnector by e.g. unauthorized personnel.
The lock is supplied with a storage box which can easily be snapped on to a DIN-rail.

Features:

Cylinder lock with 2 keys

Mounting method:

Snap-on fastening on DIN-rail to EN 50022 possible in all standard distribution panels.

Applications:

Power supply of domestic and utility buildings as well as industrial installations.

Function:

For securing the installation against restoring power when carrying out maintenance or repair work.
Setting the lock reliably prevents the accidental reconnection of mains voltage with the Tytan fuse disconnector by e.g. unauthorized personnel.
The lock is supplied with a storage box which can easily be snapped on to a DIN-rail.

Mounting method:

Snap-on fastening on DIN-rail to EN50022 possible in all standard distribution panels.

Applications:

Power supply of domestic and utility buildings as well as industrial installations.

Doorbell Transformer RK

Function:

Transformers for converting the 230 V mains voltage into protective extra low-voltage (SELV as per IEC 60 364-4-410).

Features:

- Short-circuit resistant due to PTC
- Tested to EN 61558
- Certified by both VDE and KEMA, carries the ENEC-mark for use anywhere in Europe.

Mounting method:

- Snap-on fastening on DIN-rail to EN 50022 (2 modules) possible in all standard distribution panels.
- Any mounting position possible

Applications:

- AC power supply for
- bell systems
- locking systems
- relay circuits
- etc.

Notes:

- Restore operation after a short-circuit by briefly disconnecting the primary power input.
- With small loads, or idling, the output voltage may rise
- Only for transient loading
- In the case of permanent loads we recommend using safety transformers

Accessories:

- RKM 36
- Surface mounting set for RK 81, RK 81 S,

RK 12, RK 12 S, RK 24

- RKM 54
- Surface mounting set for RK 3 U

Rotary Dimmer 500 VA LT 500 M

Designation	Article-No.
LT 500M	XX 500224

Function:

Dimmer operated by a rotary knob for the power control of all standard types of illuminations, such as e.g. incandescent lamps, high-voltage and low-voltage halogen lamps with electric or conventional transformers.
For these resistive-inductive loads or resistive-capacitive loads the dimmer can work in a normal or reverse phase control mode. If the operating mode has been set incorrectly, or if a short-circuit occurs, the dimmer will automatically disconnect the load. In addition, the LT 500 M is equipped with thermal overload protection, electronic short-circuit cut-out, overvoltage protection and a softstart function.
The device is also provided with electronic half-wave balancing and idle monitoring. This ensures the prevention of magnetic bias when conventional mains transformers are connected and of overvoltages when idling.

Features:

- Operated by integral rotary knob
- Dimming capacity: 15 VA - 500 VA
- 2 module widths only
- Phase control and reverse phase control dimmer
- Central On and Off function, memory function

Mounting method:

- Snap-on fastening on DIN-rail to EN 50022 (2 modules) possible in all standard distribution panels.
- Any mounting position possible

Applications:

- Lighting control in
- Restaurants
- etc.

Further DIN-Rail Mounted Devices

Remote Dimmer 420 VA RUD 1

actuated via external push-buttons

Function:

Remote dimmer for controlling the light intensity of all standard type of illuminations, such as e.g. incandescent lamps, high-voltage and low-voltage halogen lamps with electric or conventional transformers.
For these resistive-inductive loads or resistive-capacitive loads the dimmer can work in a normal or reverse phase control mode. If the operating mode has been set incorrectly, or in the event of a short-circuit, it will automatically disconnect the load. In addition, the RUD 1 is equipped with thermal overload protection, electronic short-circuit cut-out, overvoltage protection and a soft-start function.
The device is also provided with electronic half-wave balancing and idle monitoring. This ensures the prevention of magnetic bias when conventional mains transformers are connected and of overvoltages when idling.

Features:

- Actuation via standard push-buttons
- Dimming capacity: 15 VA - 420 VA
- 2 module widths only
- Phase control and reverse phase control dimmer
- Central On and Off function, memory function

Mounting method:

- Snap-on fastening on DIN-rail to EN 50022 (2 modules) possible in all standard distribution panels.
- Any mounting position possible

Applications:

- Lighting control in
- Private houses
- Banks
- Hospitals
- Restaurants
- etc.

Designation	Article-No.
RUD 1	XX 500028

Remote Dimmer Control Unit RUD 2

Designation	Article-No.
RUD 2	XX 500 203

Function:

The RUD 2 functions as a control module for the remote dimmer load units LT 500 and LT 1200. Actuation of the RUD 2 is via standard push-buttons.

Features:

- Output: Puls Width Modulation (PWM) signal for actuating up to ten LT 500 and LT 1200 load units
- Small size (1 module)
- Central On and Off function, memory function

Mounting method:

- Snap-on fastening on DIN-rail to EN 50022 (2 modules) possible in all standard distribution panels.
- Any mounting position possible

Applications:

- In conjunction with the remote dimmer load units the RUD 2 controls lighting in
- Private houses
- Banks
- Hospitals
- Restaurants
- etc.

Remote Dimmer Power Units LT 500 and LT 1200

Function:

Power units for light intensity control of all standard type of illuminations, such as e.g. incandescent lamps, high-voltage and low-voltage halogen lamps with electric or conventional transformers.
If the operating mode has been set incorrectly, or in the event of a short-circuit, the LT 500 and LT 1200 will automatically disconnect the load. In addition, both devices are equipped with thermal overload protection, electronic short-circuit cut-out, overvoltage protection and a soft-start function.
The load output stages are also provided with electronic half-wave balancing and idle monitoring. This ensures the prevention of magnetic bias when conventional mains transformers are connected and of overvoltages when idling. Up to 10 load units can be actuated via the PWM signal output of a remote dimmer, a dimmer control unit or a lighting scene control device, and can be operated either in a normal or reverse phase control mode. It is also permissible to connect two stages in parallel at the output side.
Selection of the output stages thus enables the control to be flexibly adapted to the lamp load.

Features:

- Parallel connection at output side of two LT 1200 possible (2400 VA)
- Dimming capacity LT 500: 15 VA - 500 VA (2 modules)
- Dimming capacity LT 1200: 15 VA - 1200 VA (4 modules)
- Phase control and reverse phase control dimmer

Mounting method:

- Snap-on fastening on DIN-rail to EN 50022 possible in all standard distribution panels.
- Any mounting position possible

Applications:

- Lighting control in buildings with extensive artificial lighting such as
- Banqueting and theatre halls
- Churches
- Restaurants
- etc.

Designation	Article-No.
LT 500	XX 500 226
LT 1200	XX 500 227

Power Supply Unit NT 24-250

Designation	Article-No.
NT 24-250	XX 500 162

Function:

The NT 24-250 power pack is primary pulsed, stabilized 24 V DC power supply and meet the requirement of electrical isolation between the protective low voltage and low-voltage side as specified in IEC 60 364-4-41.
They are overload as well as sustained short-circuit resistant and are equipped with indicators for such overload faults.
Once the fault in the output circuit has been remedied, they will automatically return to the normal operating status.

Features:

- Compact design
- High degree of efficiency
- Protective extra low voltage (SELV) conforming to IEC 60 364-4-41
- High stability of output voltage
- Overload proof
- Sustained short-circuit resistant
- Status and Overload indication via LEDs on front panel

Mounting method:

- Snap-on fastening on DIN-rail to EN 50022 possible in all standard distribution panels
- Any mounting position possible

Applications:

- Power supply unit for 24 V DC DIN-rail devices such as e.g. Dupline bus system, SI system etc.

Notes:

Basically, it is possible to connect several power supply units in parallel; in such cases however the total load capacity of the parallel-connected power supply units must be reduced by 10%. Only a maximum of 3 power supply units of the same type, either NT 24-250 or NT 24-1300, may be connected in parallel.

Power Supply Unit NT 24-1300

Function:

The NT 24-1300 power pack is primary pulsed, stabilized 24 V DC power supply and meet the requirement of electrical isolation between the protective low voltage and low-voltage side as specified in IEC 60 364-4-41.
They are overload as well as sustained short-circuit resistant and are equipped with indicators for such overload faults.
Once the fault in the output circuit has been remedied, they will automatically return to the normal operating status.

Features:

- Compact design
- High degree of efficiency
- Protective extra low voltage (SELV) conforming to IEC 60 364-4-41
- High stability of output voltage
- Overload proof
- Sustained short-circuit resistant
- Status and Overload indication via LEDs on front panel

Mounting method:

- Snap-on fastening on DIN-rail to EN 50022 possible in all standard distribution panels
- Any mounting position possible

Applications:

- Power supply unit for 24 V DC DIN-rail devices such as e.g. Dupline bus system, SI system etc.

Notes:

Basically, it is possible to connect several power supply units in parallel; in such cases however the total load capacity of the parallel-connected power supply units must be reduced by 10%. Only a maximum of 3 power supply units of the same type, either NT 24-250 or NT 24-1300, may be connected in parallel.

Designation	Article-No.
NT 24-1300	XX 500 163

Twilight Switch DASY

Designation	Article-No.
10 A	
DASY 10, 10A	XX 500013
16 A	
DASY 16, 16A	XX 500012

Function:

Electronic twilight switch for daylight-dependent switching of electrical loads.

Features:

- Wide setting range for switching light levels as well as high stability of switching thresholds.
- A logarithmic setting characteristic, together with a LED to indicate when switching thresholds are reached, ensure fast and precise setting of the desired switching light levels over the complete range.
- Largely immune to optical feedback when lighting is switched on, due to the preset hysteresis between the threshold values for switch-on and switch-off light levels.
- Delayed switching reaction prevents unwanted switching as a result of temporary changes in environmental light levels.
- Rugged switching contact enables switching of e.g. parallel-compensated fluorescent illuminations.
- Generously dimensioned connecting space and cable feed-in at both top and bottom of the device to facilitate lead connection.

Mounting method:

- Surface-mounted housing for wall-mounting inside and outside

Applications:

Switching of lighting for paths, terraces, car parks, shop windows etc. upon onset of twilight, even at locations where no switched lead of the supply cable is available.

Technical Data and

Dimensions

50 Years of Innovation and German Quality

Innovation a Tradition

Technical data

DFS 2, 2-pole / DFS 4, 4-pole

Operating characteristic	Type A: AC and pulsating DC residual current ; Type AC: AC residual current							
Rated current In	16 A	25 A	40 A	63 A	80 A	100 A	125 A	
Rated residual operating current I Δ n	0,01 A							
	0,03 A ; 0,1 A ; 0,3 A ; 0,5 A							
Resistance to surge current	$0,5 \mu \mathrm{~s} / 100 \mathrm{kHz}$ ring-wave-test							
Rated voltage U_{n}	$230 \mathrm{~V} \sim / 400 \mathrm{~V} \sim$							
Max. allowable operational voltage	$U_{\mathrm{n}}+10 \%$							
Rated frequency	50 Hz							
Working voltage range of test device	$100 \mathrm{~V} \sim-250 \mathrm{~V} \sim$							
Max. break time	$1 \times \\|_{\Delta n}: \leq 300 \mathrm{~ms} ; 5 \times \mathrm{I}_{\Delta \mathrm{n}}: \leq 40 \mathrm{~ms}$							
Rated making and breaking capacity Im_{m}	500 A			800 A		1000 A	1250 A	
Rated residual making and breaking capacity $\mathrm{I} \Delta \mathrm{m}$	500 A			800 A		1000 A	1250 A	
Rated conditional short-circuit current Inc DFS 2	10 kA					6 kA		
Rated conditional residual short-circuit current I $\Delta \mathrm{c}$	10 kA					6 kA		
Rated conditional short-circuit current Inc \quad DFS 4	10 kA							
Rated conditional residual short-circuit current $I \Delta c$	10 kA							
Short-circuit fuse Type „A" Type "AC"	$\begin{array}{r} 100 \mathrm{~A} / \mathrm{gL} \\ 63 \mathrm{~A} / \mathrm{gL} \\ \hline \end{array}$			$\begin{aligned} & 100 \mathrm{~A} / \mathrm{gL} \\ & 100 \mathrm{~A} / \mathrm{gL} \\ & \hline \end{aligned}$		$\begin{aligned} & 125 \mathrm{~A} / \mathrm{gL} \\ & 125 \mathrm{~A} / \mathrm{gL} \\ & \hline \end{aligned}$		
Power dissipation DFS 2	0,3 W	0,8 W	1,8 W	4,3 W	7,0 W	11,5 W	17,9 W	
Power dissipation DFS 4	0,6 W	1,4 W	3,7 W	8,3 W	13,1 W	21,2 W	29,8 W	
Position of normal use	Any direction							
Degree of protection	IP 40 (after installation in distribution board)							
Resistance to mechanical shock and impact	$20 \mathrm{~g} / 20 \mathrm{~ms}$ duration							
Resistance to mechanical vibration	$>5 \mathrm{~g}$ ($\mathrm{f} \leq 80 \mathrm{~Hz}$, duration $>30 \mathrm{~min}$.)							
Ambient temperature	$-25^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$							
Climatic reliability	conforming to DIN IEC 60068-2-30: damp / heat cyclic ($25^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$; $93 \% / 97 \% \mathrm{rF}$)							
Terminal Round wire, solid Stranded cross-sections Fine-stranded	$1 \times 1,5-50 \mathrm{~mm}^{2}$ (1-cond. terminal); $2 \times 1,5-16 \mathrm{~mm}^{2}$ (2-cond. terminal)$1 \times 1,5-50 \mathrm{~mm}^{2}\left(1\right.$-cond. terminal); $2 \times 1,5-16 \mathrm{~mm}^{2}$ (2-cond. terminal)$1 \times 1,5-35 \mathrm{~mm}^{2}\left(1\right.$-cond. terminal); $2 \times 1,5-16 \mathrm{~mm}^{2}$ (2-cond. terminal)							
Tightening torque of clamping screws	3 Nm							
Min. cross-sections of conductor						$50 \mathrm{~mm}^{2}$		
Mechanical endurance	> 5000 switching cycles							
Electrical endurance	> 2000 switching cycles							
Design requirements	DIN VDE 0664, EN 61008, IEC 61008							

Page 6-13	DFS 4, 4-pole	Page 14-22
Page 114	Dimensions	Page 114
Page 120	Wiring diagram	Page 120
Page 38-39	Accessories	Page 38-39

Residual Current Circuit-Breakers (RCCB)

Technical data

DFS 4B NK / DFS 4B SK

Number of poles	4-pole							
Operating characteristic	Type B NK ; Type B SK							
Rated current $\mathrm{In}^{\text {n }}$	16 A	25 A	40 A	63 A	80 A	100 A	125 A	
Rated residual operating current $1 \Delta n$	0,03 A ; 0,1 A ; 0,3 A ; 0,5 A							
Frequency range of tripping	0-1 MHz; selectable: $0-100 \mathrm{kHz}$							
Resistance to surge current	5 kA , impulse $8 / 20 \mu \mathrm{~s}$							
Rated voltage Un	$230 \mathrm{~V} \mathrm{AC} \mathrm{/} 400 \mathrm{~V}$ AC							
Min. required operating voltage for detecting Type A residual currents for detecting Type B residual currents	$\begin{aligned} & 0 \mathrm{~V}(\text { mains voltage-independent })^{21} \\ & 30 \mathrm{VAC} \end{aligned}$							
Max. allowable operational voltage	$\mathrm{U}_{\mathrm{n}}+10 \%$							
Rated frequency	50 Hz							
Working voltage range of test device	185 V AC - 440 V AC							
Tripping times DFS 4B, DFS 4B SK	$1 \times \\|_{\Delta n}: \leq 300 \mathrm{~ms} ; 5 \times 1 \Delta \mathrm{n}: \leq 40 \mathrm{~ms}$							
Response time delay DFS 4B SK S	$1 \times \mathrm{I}_{\Delta \mathrm{n}}: 130 \mathrm{~ms}<\mathrm{T} \leq 500 \mathrm{~ms} ; 5 \times \mathrm{I}_{\Delta \mathrm{n}}: 50 \mathrm{~ms}<\mathrm{T} \leq 150 \mathrm{~ms}$							
Rated making and breaking capacity Im_{m}	500 A			800 A		1000 A	1250 A	
Rated residual making and breaking capacity $I \Delta \mathrm{~m}$	500 A			800 A		1000 A	1250 A	
Rated conditional short-circuit current Inc	10 kA							
Rated conditional residual short-circuit current I Δc	10 kA							
Short-circuit fuse to DIN VDE 0636 / IEC 60269-1	$100 \mathrm{~A} / \mathrm{gL}$					125 A/gL		
Power dissipation	0,5 W	1,2 W	2,9 W	7,2 W	12 W	18 W	28 W	
Power consumption	max. 3,5 W							
Supply terminals	terminals $\mathrm{N}, 3,5,7^{\text {I }}$							
Position of normal use	optional							
Degree of protection	IP 40 (after installation in distribution board)							
Resistance to mechanical shock and impact	$20 \mathrm{~g} / 20 \mathrm{~ms}$ duration							
Resistance to mechanical vibration	$>5 \mathrm{~g}$ ($\mathrm{f} \leq 80 \mathrm{~Hz}$, duration $>30 \mathrm{~min}$.)							
Ambient temperature	$-25^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$							
Climatic reliability	conforming to IEC 68-2-30: damp / heat cyclic ($25^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$; $93 \% / 97 \%$ rel. hum., 28 cycles)							
Terminal cross-sections Round wire, solid Stranded Fine-stranded	$\begin{aligned} & 1 \times 1,5-50 \mathrm{~mm}^{2} \text { (1-wire connect.); } 2 \times 1,5-16 \mathrm{~mm}^{2} \text { (2-wire connect.) } \\ & 1 \times 1,5-50 \mathrm{~mm}^{2} \text { (1-wire connect.); } 2 \times 1,5-16 \mathrm{~mm}^{2} \text { (2-wire connect.) } \\ & 1 \times 1,5-50 \mathrm{~mm}^{2}\left(1 \text {-wire connect.); } 2 \times 1,5-16 \mathrm{~mm}^{2}\right. \text { (2-wire connect.) } \end{aligned}$							
Tightening torque of clamping screws	3 Nm							
Min. cross-sections of conductor						$50 \mathrm{~mm}^{2}$		
Mechanical endurance	> 5000 switching cycles							
Electrical endurance	> 2000 switching cycles							
Design requirements	DIN VDE 0664 Pt. 10, E DIN VDE 0664 Pt. 100							
Elektromagnetic compatibility	DIN VDE 0664 Pt. 30; DIN VDE 0839 Pt. 6 - 2 (interference resistance - industrial environment)							

${ }^{1)}$ Recommended for simple insulation tests at the installation side as it then possible by switching off the DFS 4B SK to isolate the internal overvoltage protection elements from the load end of the installation.
${ }^{2)}$ At mains voltages below 30 VAC tripping for residual currants of Type A and $A C$ is ensured by means of a mains voltage-independent function.

DFS 4B NK / DFS 4B SK Page 24/29
Dimensions Page 114
Wiring diagram Page 120
Accessories Page 38-39

Innovation a Tradition

Technical data

DFL 8 A (X)

Rated current In	100 A	125 A	160 A	200 A	250 A
Rated residual operating current $I_{\Delta n}$ DFL 8 A DFL 8 A X	$0,03 \mathrm{~A}$adjustable: $0,3 \mathrm{~A} ; 0,5 \mathrm{~A} ; 1,0 \mathrm{~A} ; 3,0 \mathrm{~A}$				
Rated operational voltages U_{e}	400 / 690 V AC				
Rated frequency	50 Hz				
Number of poles	4-pole				
Rated impulse withstand voltage Uimp	8 kV				
Short-circuit fuse to IEC 60269-1	$250 \mathrm{~A} / \mathrm{gL}$				
Impact resistance	$20 \mathrm{~g} / 20 \mathrm{~ms}$ duration (IEC 60068-2-27)				
Vibration resistance	$1,0 \mathrm{~g}(\mathrm{f}=2-100 \mathrm{~Hz}$) (IEC 60068-2-6)				
Degree of protection	IP 20				
Position of normal use	vertical (N -left), or 90° tilted				
Supply terminals	any				
Ambient temperature	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$				
Environmental testing	IEC 60068				
Dry heat	IEC 60068-2-2				
Humid heat $\begin{array}{r}\text { constant } \\ \text { cyclic }\end{array}$	IEC 60068-2-78 IEC 60068-2-30				
Terminalssolid-core multi-core	$\begin{gathered} 1 \times 2,5-16 \mathrm{~mm}^{2} ; 2 \times 4-16 \mathrm{~mm}^{2} \\ 1 \times 25-185 \mathrm{~mm}^{2} ; 2 \times 25-70 \mathrm{~mm}^{2} \\ \hline \end{gathered}$				
Tightening torque	14 Nm				
Service life, mechanical	> 2000 switching cycles				
Service life, electrical	> 2000 switching cycles				
Design requirements $\quad \begin{gathered}\text { overload trip } \\ \text { residual current trip }\end{gathered}$	VDE 0660 / EN 60947-2 VDE 0660 / EN 60947-2 Annex B				
Electromagnetic compatibility	EN 60947				

Residual current protection

Detection range of residual current	$50 \mathrm{~Hz} \sim \Omega \cap$				
Working range of test circuit	280 V AC - 690 V AC				
Surge current resistance	5 kA				
Response times DFL 8 A DFL 8 AX at $2 \times \mathrm{I} \Delta \mathrm{n}$	$1 \times I \Delta \mathrm{n} \leq 300 \mathrm{~ms} ; 5 \times I \Delta \mathrm{n} \leq 40 \mathrm{~ms}$ range $I=60-120 \mathrm{~ms}$ range III $=300-420 \mathrm{~ms}$ range II $=150-250 \mathrm{~ms}$ range IV $=450-600 \mathrm{~ms}$				
Short-time delay DFL 8 A	Short time delay / G-characteristic $\leq 10 \mathrm{~ms}$				
Auxiliary switch	1 NOC / M22-K10 + 1 NCC / M22-K01				
Power rating auxiliary switch	AC-15: $230 \mathrm{~V} / 6 \mathrm{~A} ; 400 \mathrm{~V} / 4 \mathrm{~A} ; 500 \mathrm{~V} / 2 \mathrm{~A}$ DC-13: $24 \mathrm{~V} / 3 \mathrm{~A} ; 110 \mathrm{~V} / 0,8 \mathrm{~A} ; 220 \mathrm{~V} / 0,3 \mathrm{~A}$				
Rated impulse withstand voltage Uimp	6 kV				
Rated insulation voltage U_{i}	500 V				
Terminals: solid-core and multi-core	$1 \times 0,75-2,5 \mathrm{~mm}^{2} ; 2 \times 0,75-1,5 \mathrm{~mm}^{2}$				
Tightening torque	$\leq 0,8 \mathrm{Nm}$				
Circuit-breaker					
Dissipated power Pr (typ.)	35 W	43 W	55 W	72 W	85 W
Rated ultimate short-circuit breaking capacity Icu	85 kA at 240 V AC 50 kA at $400 / 415 \mathrm{~V}$ AC		35 kA at 440 V AC 25 KA at 525 V AC	20 kA at 690 V AC	
Rated service short-circuit breaking capacity Ics	85 kA at 240 V AC 50 kA at $400 / 415 \mathrm{~V}$ AC		35 kA at 440 V AC 25 kA at 525 V AC	10 kA at 690 V AC	
Rated residual short-circuit making an breaking capacity $I \Delta \mathrm{~m}$	85 kA at 240 V AC 50 kA at $400 / 415 \mathrm{~V}$ AC		35 kA at 440 V AC 25 kA at 525 V AC	20 kA at 690 V AC	
Current-setting range of an overload release life conductor	80-100 A	100-125 A	125-160 A	160-200 A	200-250 A
Current-setting range of an overload release neutral conductor	80-100 A	100-125 A	125-160 A	160-200 A	200-250 A
Current-setting range of an short-circuit release	600-1000 A	750-1250 A	960-1600 A	1200-2000 A	1500-2500 A

Dimensions Page 114
Wiring diagram Page 120

Circuit-Breakers with Residual Current Device (CBR)

Technical dafa
DFL 8 B (X)

Rated current In	100 A	125 A	160 A	200 A	250 A
Rated residual operating DFL 8 B current $I_{\Delta n}$ \quad DFL 8 B X	$\begin{aligned} & \text { 0,03 A } \\ & \text { adjustable: } 0,1 \mathrm{~A} ; 0,5 \mathrm{~A} ; 1,0 \mathrm{~A} \\ & \hline \end{aligned}$				
Rated operational voltages U_{e}	$230 / 400 \mathrm{~V} \mathrm{AC}$				
Rated frequency	50 Hz				
Number of poles	4-pole				
Rated impulse withstand voltage Uimp	4 kV				
Short-circuit fuse to IEC 60269-1	$250 \mathrm{~A} / \mathrm{gL}$				
Impact resistance	$20 \mathrm{~g} / 20 \mathrm{~ms}$ duration (IEC 60068-2-27)				
Vibration resistance	$1,0 \mathrm{~g}(\mathrm{f}=2-100 \mathrm{~Hz}$) (IEC 60068-2-6)				
Degree of protection	IP 20				
Position of normal use	vertical (N-left), or 90° tilted				
Supply terminals	any				
Ambient temperature	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$				
Environmental testing	IEC 60068				
Dry heat	IEC 60068-2-2				
Humid heat $\begin{gathered}\text { constant } \\ \text { cyclic }\end{gathered}$	$\begin{aligned} & \text { IEC 60068-2-78 } \\ & \text { IEC 60068-2-30 } \end{aligned}$				
Terminalssolid-core multi-core	$\begin{gathered} 1 \times 2,5-16 \mathrm{~mm}^{2} ; 2 \times 4-16 \mathrm{~mm}^{2} \\ 1 \times 25-185 \mathrm{~mm}^{2} ; 2 \times 25-70 \mathrm{~mm}^{2} \end{gathered}$				
Tightening torque	14 Nm				
Service life, mechanical	> 2000 switching cycles				
Service life, electrical	> 2000 switching cycles				
Design requirementsoverload trip residual current trip	VDE 0660 / EN 60947-2VDE 0660 / EN $60947-2$ Annex B				
Electromagnetic compatibility	EN 60947				
Residual current protection					
Rated residual operating DFL 8 B current $I_{\Delta n}$ DFL 8 B X	$\begin{gathered} 0,03 \mathrm{~A} \\ 0,1 \mathrm{~A} ; 0,3 \mathrm{~A} ; 1,0 \mathrm{~A} \end{gathered}$				
Detection range of residual current	$\sim 0-100 \mathrm{kHz}$; $\Omega \Omega 50 \mathrm{~Hz}$				
Min. operation voltage for detecting type $A / A C$ residual currents for detecting type B residual currents	0 V (mains voltage-independent)50 V AC				
Power consumption	2,5-3 W				
Working range of test circuit	50 V AC - 400 V AC				
Surge current resistance	5 kA				
Response times DFL 8 B DFL 8 B X at $2 \times I \Delta n$	$1 \times I \Delta \mathrm{n} \leq 300 \mathrm{~ms} ; 5 \times I \Delta \mathrm{n} \leq 40 \mathrm{~ms}$ range $I=60-120 \mathrm{~ms}$ range $\mathrm{III}=300-420 \mathrm{~ms}$ range $I I=150-250 \mathrm{~ms}$ range IV $=450-600 \mathrm{~ms}$				
Auxiliary switch	1 NOC / M22-K10 + 1 NCC / M22-K01				
Power rating auxiliary switch	AC-15: $230 \mathrm{~V} / 6 \mathrm{~A} ; 400 \mathrm{~V} / 4 \mathrm{~A} ; 500 \mathrm{~V} / 2 \mathrm{~A}$ DC-13: $24 \mathrm{~V} / 3 \mathrm{~A} ; 110 \mathrm{~V} / 0,8 \mathrm{~A} ; 220 \mathrm{~V} / 0,3 \mathrm{~A}$				
Rated impulse withstand voltage Uimp	6 kV				
Rated insulation voltage U_{i}	500 V				
Terminals: solid-core and multi-core	$1 \times 0,75-2,5 \mathrm{~mm}^{2} ; 2 \times 0,75-1,5 \mathrm{~mm}^{2}$				
Tightening torque	$\leq 0,8 \mathrm{Nm}$				
Circuit-breaker					
Dissipated power Pv (typ.)	35 W	43 W	55 W	72 W	85 W
Rated ultimate short-circuit breaking capacity Icu	85 kA at 240 V AC 50 kA at $400 / 415 \mathrm{~V} \mathrm{AC}$			35 kA at 440 V AC	
Rated service short-circuit breaking capacity Ics	85 kA at 240 V AC 50 kA at $400 / 415 \mathrm{~V} \mathrm{AC}$			35 kA at 440 V AC	
Rated residual short-circuit making an breaking capacity $I \Delta \mathrm{~m}$	85 kA at 240 V AC 50 kA at 440 V AC			35 kA at 440 V AC	
Current-setting range of an overload release life conductor	80-100 A	100-125 A	125-160 A	160-200 A	200-250 A
Current-setting range of an overload release neutral conductor	80-100 A	100-125 A	125-160 A	160-200 A	200-250 A
Current-setting range of an short-circuit release	600-1000 A	750-1250 A	960-1600 A	1200-2000 A	1500-2500 A

DFL 8 B (X)
Page 34-37
Dimensions
Page 22
Wiring diagram
Page 121

Technical dafa

DHi 1 / DHi 2

DHi 1
Dimensions
Page 64
DHi 2
Page 38
Wiring diagram

Page 114
Page 121

Dimensions
Page 114
Wiring diagram
Page 121

Different technical data to the table DFS 2 / DFS 4 (page 94)

Technical dała

Resistance to surge current

DFS 2 KV / DFS 4 KV

3000 A / impulse $8 / 20 \mu \mathrm{~s}$

Technical data	DFS 2 S / DFS 4 S				
Rated current In	40 A	63 A	80 A	100 A	125 A
Rated residual operating current $1 \Delta n$	0,1 A ; 0, 3 ; 0, 5 A				
Resistance to surge current	$3000 \mathrm{~A} /$ impulse $8 / 20 \mu \mathrm{~s}$				

Technical data					
DFS 4 V 500					
Rated current I_{n}	16 A	25 A	40 A	63 A	80 A
Short-circuit fuse	$63 \mathrm{~A} / \mathrm{gL}$				$100 \mathrm{~A} / \mathrm{gL}$

DFS 2, 2-pole	Page 6-13	DFS 4, 4-pole	Page 14-22
	Dimensions	Page 114	Dimensions

Residual Current Monitors (RCM)

Technical data

Rated operating voltages U_{e}	230 V
Rated frequency	$50-60 \mathrm{~Hz}$
Residual current sensitivity	Type A; AC $50 \mathrm{~Hz} ;$ pulsating DC 50 Hz
Rated residual operating current I n n	30 mA
Transformer diameter internal	25 mm
Semiconductor outputs	connection for external DMD-P panel
Power-on indicator	green LED
Fault indicator	red LED
Actuators	test button
Surge current immunity	$>250 \mathrm{~A}(8 / 20 \mu \mathrm{~s})$
Terminals	max. $2,5 \mathrm{~mm}{ }^{2}$
Degree of protection	IP 40
Ambient temperature	$-25^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
Design requirements	IEC $/ \mathrm{EN} 62020$

DMD 1

230 V
$50-60 \mathrm{~Hz}$

30 mA
25 mm
green LED
red LED
$>250 \mathrm{~A}(8 / 20 \mu \mathrm{~s})$
max. 2,5 mm ${ }^{2}$
$25^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
IEC / EN 62020

DMD 1
Dimensions
Wiring diagram
Accessories

Technical data

Rated operating voltages U_{e}
Rated frequency

Residual current sensitivity
Rated residual operating current I Δ n
Limit value (response threshold)
Response delay tv at $\mathrm{I} \Delta \mathrm{n}$
Actuating time at $\mathrm{t}_{\mathrm{v}}=0,1 \mathrm{~s}$
Transformer diameter internal

Transformer external
Transformer diameter external

Max. cable length to transformer
Relay output
Semiconductor outputs
Power-on indicator

Fault indicator

Actuators
Response thre
Residual curre
Surge current
Terminals
Degree of pro
Ambient temp
Design require

DMD 2	Page 43
Dimensions	Page 115
Wiring diagram	Page 122

Wiring diagram
Accessories

DMD 2
DMD 2 E
230 V
50 Hz
Type A; AC 50 Hz ; pulsating DC 50 Hz
adjustable: $30 \mathrm{~mA}, 100 \mathrm{~mA}, 300 \mathrm{~mA}, 1000 \mathrm{~mA}$ adjustable: $10-100 \%$
adjustable $0,1 \mathrm{~s} \ldots 1 \mathrm{~s}$
$1 \times \mathrm{I}_{\Delta \mathrm{n}} \leq 100 \mathrm{~ms} ; 5 \times \mathrm{I}_{\Delta \mathrm{n}} \leq 40 \mathrm{~ms}$
25 mm

DWP 35	DWP 70	DWP 105	DWP 140
35 mm	70 mm	105 mm	140 mm

1 change-over contact, $250 \mathrm{~V} / 6 \mathrm{~A}$
connection for external DMD-P panel
(max. loading capacity 10 mA , short-circuit resistant)
Page 115
Page 122
Page 48/49

Technical data
DMD 3-1 B
DMD 3-2 B

Rated operating voltages U_{e}	$85 \mathrm{~V}-264 \mathrm{~V}$	
Rated frequency	$50-60 \mathrm{~Hz}$	
Residual current sensitivity	Type B; AC / DC $0-100 \mathrm{~Hz}$; pulsating DC 50 Hz	
Rated residual operating current $1 \Delta n$	$\begin{gathered} \text { settable: } \\ 30 \mathrm{~mA}, 100 \mathrm{~mA}, 300 \mathrm{~mA} \end{gathered}$	$\begin{gathered} \text { settable: } \\ 300 \mathrm{~mA}, 500 \mathrm{~mA}, 1000 \mathrm{~mA} \end{gathered}$
Response threshold, main alarm	100% of selected rated residual current	
Response threshold, prelim. alarm	adjustable: $10-90 \% 1 \Delta n$	
Response delay $\mathrm{tv}^{\text {at }} 2 \times \mathrm{I}_{\Delta n}$	adjustable 0,1 s ... 1 s	
Transformer diameter internal	25 mm	
Relay output main alarm preliminary alarm	electrically isolated relay contacts 1 change-over contact $230 \mathrm{~V} / 2 \mathrm{~A}$ 1 change-over contact $230 \mathrm{~V} / 2 \mathrm{~A}$	
Power-on indicator	green LED	
Fault indicator	red LED; flashing indicator; relay outputs	
Actuators	test button, reset-prog. button, switch for residual current, potentiometer for preliminary current and delay time	
Response threshold indication, prelim. alarm	10-fold LED indicator bar, 10-90\%	
Residual current I \triangle indication	10-fold LED indicator bar, $10-100 \%$	
Surge current immunity	$>3 \mathrm{kA}(8 / 20 \mu \mathrm{~s})$	
Terminals	max. $2,5 \mathrm{~mm}^{2}$	
Degree of protection	IP 40	
Ambient temperature	$-25^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$	
Others	automatic reconnection after power is restored	
Design requirements	IEC / EN 62020	

DMD 3-1 B / DMD 3-2 B Page 46/47
Dimensions Page 115

Wiring diagram	Page 122
Accessories	Page 48/49

Technical data

DMD P

ON indicator	yellow LED
Alarm indicator	- visual: flashing red LED
	- acoustic: intermittent tone
Acoustic alarm	can be cancelled with reset button
Installation	flush-mounted / surface mounted

DMD P
Dimensions Page 115

Residual Current Monitors (RCM)

Technical dafa

Rated voltage	24 V DC $\pm 10 \%$
Power consumption	100 m W (On) / 0 W (Off)
Control voltage	24 V DC $\pm 10 \%$
Control current	max. 4 mA
Required trigger impulse length	min .20 ms
Output data	
Type of contact	single pole floating NO micro gap
Rated voltage	250 V
Rated current	16 A
Making and breaking capacity (>100.000 operation cycles)	
Incandescent lamps	3700 W
Fluorescent lamps - uncompensatet or lead-lag ballast - parallel compensatet	$\begin{aligned} & 3200 \text { VA } \\ & 2300 \text { VA } \end{aligned}$
Mercury vapour lamps	2300 VA
Max. capacitor for parallel compensation	$70 \mu \mathrm{~F}$
Power dissipation at rated load	2,5 W
Overload protection	none
Make delay	20 ms
Break delay	25 ms
Housing	Polycarbonat, gray 1 pitch
Mounting	on rail (EN 50022) in distribution boards, 1 pitch
Position of normal use	arbitrary
Degree of protection	IP 40 (after fitting in distribution board)
Terminals	screw types, $1 \times$ supply + , supply-, $1 \times L_{\text {IN }}$, Lout, $1 \times$ control input
Tightening torque	$0,5 \mathrm{Nm}$
Nominal cross-sectional area	$1 \times 2,5 \mathrm{~mm}^{2}$ rigid conductors, $1 \times 1,5 \mathrm{~mm}^{2}$ flexible conductors
Smallest possible conductor size	$0,4 \mathrm{~mm}$ in diameter
Control inputs	A1 for momentary contact switch
Lenght of control wires	1000 m
On-Off indicator	by LED
Further indicators	none
Actuators	none
Ambient temperature	$-25^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$
Design requirements	IEC 60669
Approvals	none

Technical dafa
 FIB/FIC 1 p+N
 FIB/FIC 3 p+N

Number of poles	$1 \mathrm{p}+\mathrm{N}$	$3 \mathrm{p}+\mathrm{N}$
Design requirements	EN 61009, IEC 1009	
Rated voltage	$\sim 230 \mathrm{~V}$	$\sim 400 \mathrm{~V}$
Rated frequency	50 Hz	$50 / 60 \mathrm{HZ}$
Residual current sensitivity		
AC residual current	Type AC	
AC and pulsating DC residual currents	Type A	
Energy limiting class	3	
Rated breaking capacity / short circuit resistance	10 kA	6 kA
Tripping characteristic	B and C	
Back-up fuse	$100 \mathrm{~A} / \mathrm{gL}$	
Contact cross-section	$1-25 \mathrm{~mm}^{2}$	
Enclosure protection type, installed	IP 40	
Ambient temperature	$-25^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$	
Tightening torque of connecting terminals	$2-2,4 \mathrm{Nm}$	
Mounting	on DIN EN 50022 rail	

FIB... / FIC..
Page 52/53
Dimensions
Wiring diagram
Page 121
Accessories

Residual Current Circuit-Breakers with Overcurrent Protection (RCBO)

Technical dafa
Hil1 for FIB/FIC 2-pole

Contact function	1 NOC, 1 NCC
Rated operating voltage	250 V AC / DC
Rated insulation voltage	250 V
Min. operating current	10 mA
Min. voltage per switching track	5 V AC / DC
Rated current	6 A
Qualified short-circuit current	1000 A
AC 15 mode	$2 \mathrm{~A} / 250 \mathrm{~V}$
AC 13 mode	$3 \mathrm{~A} / 250 \mathrm{~V}$
DC 12 mode	0,5 A / 110 V
Conductor cross-section	max. $2,5 \mathrm{~mm}^{2}$ flexible conductors only with wire and ferrule
Tightening torque of terminals	0,8-1 Nm
Module width	9 mm
Dimension of base	80 mm
Cover fitting dimension	45 mm

	Hi11	Page 54
	Pagensions 116	
	Wiring diagram	Page 121

Technical and mechanical data FAM 1 for FIB/FIC 2-pole
Technical data

Rated voltage	$230(400) \mathrm{V} \mathrm{AC}$
For combined RCCB / MCBs with rated residual op. current	$0,01-0,3 \mathrm{~A}$
Operating range	$230-400 \mathrm{~V} \pm 10 \% \mathrm{AC}$
Mechanical data	0,5 module
Retrofittable, housing width	4 lift terminals, $1 \times 1 \mathrm{~mm}^{2}-2 \times 2,5 \mathrm{~mm}^{2}$ terminals $\mathrm{W} 1 / \mathrm{W} 2$ resist. + switching contact
Terminals	$0,8-1 \mathrm{Nm}$
Terminal torque	

FAM 1
Page 55
Dimensions
Page 116
Wiring diagram
Page 121

Technical data
Number of poles Operating characteristics

B characteristic:
C characteristic:
Rated voltage U_{n}
Min. operating voltage
Max. operating voltage
Rated frequency
Rated short-circuit capacity Icn
Back-up protection
Protection against short-circuit currents exceeding the breaking capacity limit (EN 60947-2, IEC 947-2)
\square

DLS 5, B + C Characteristic

1

1-pole; 1-pole+N; 2-pole; 3-pole; 3-pole+N; 4-pole B and C
6 A; 10 A; 13 A; 16 A; 20 A; 25 A; 32 A; 40 A; 50 A; 63 A
0,5 A; 1 A; 2 A; 4 A; 6 A; 10 A; 13 A; 16 A; 20 A; 25 A; 32 A; 40 A; 50 A; 63 A $230 / 400 \mathrm{~V} \mathrm{AC}, 60 \mathrm{~V}$ DC UBmin. $=12 \mathrm{~V} \mathrm{AC} / 12 \mathrm{~V}$ DC
UBmax. $=250 / 440 \mathrm{~V} \mathrm{AC}, 60 \mathrm{~V}$ DC
$162 / 3-60 \mathrm{~Hz}$ at 400 Hz the response value of the magnetic switch is increased by approx. 30%

$$
10 \mathrm{kA} 6-63 \mathrm{~A}
$$

$10 \mathrm{kA} \mathrm{C} \mathrm{0,5-4} \mathrm{~A} \mathrm{as} \mathrm{conforming} \mathrm{to} \mathrm{EN} 60898$
up to $\mathrm{I}_{\mathrm{k}}=50 \mathrm{kA} \quad \mathrm{C}: \operatorname{In} 0,5-4 \mathrm{~A}$ with $\mathrm{BF}^{*} \quad 20 \mathrm{~A}$
$B, C: \operatorname{In} 6-10 A$ with $B F^{*} 80 A$
B, C: $\ln 13-32 \mathrm{~A}$ with $\mathrm{BF}^{*} 100 \mathrm{~A}$
$B, C: \operatorname{In} 40-63 A$ with $B F * 125 A$
The installation specifications of DIN VDE 0100 must be observed
*BF = back-up fuse NHgG
Resistance to surge voltage
Resistance to alternating surge voltage
Position of normal use
Degree of protection
Ambient temperature, daily average
Tightening torque of clamping screws
Electrical / mechanical endurance
Design requirements
Mounting
$5 \mathrm{kV}(1,2 / 50 \mu \mathrm{~s})$
$3 \mathrm{kV}(50$ to 60 Hz$)$ optional
IP 20, with cover IP 40
$\mathrm{T}_{\text {max }}=+55^{\circ} \mathrm{C}$; $\mathrm{T}_{\text {min }}=-25^{\circ} \mathrm{C}$
2 Nm
min. 4000 switching cycles
DIN VDE 0641 Part 11, EN 60898, IEC 893
B, C: EN 60947-2, IEC 947-2
on rail conforming to EN $50022 ; \mathrm{W}=35 \mathrm{~mm}$

Technical data MCB, D Characteristic

Number of poles	1-pole; 1-pole+N; 2-pole; 3-pole; 3-pole+N; 4-pole
Operating characteristic	D
Rated current In	$1 \mathrm{~A} ; 2 \mathrm{~A} ; 4 \mathrm{~A} ; 6 \mathrm{~A} ; 10 \mathrm{~A} ; 13 \mathrm{~A} ; 16 \mathrm{~A}$
Rated voltage Un	$240 / 415 \mathrm{~V} \mathrm{AC}, 1$-pole 60 V DC
Min. operating voltage	2-pole 125 V DC with both poles connected in series

DLS 5, B Characteristic Page 58/59
DLS 5, C Characteristic Page 60/61
MCB, D Characteristic Page 62/63
Dimensions Page 116
Dimensions Page 116
$\begin{array}{llll}\text { Accessories } & \text { Page 64-67 } & \text { Accessories } & \text { Page 64-67 }\end{array}$

Miniature Circuit Breakers (MCB)

Technical dafa

Rated voltage	24 V AC or 24 V DC $\pm 10 \%$ at different terminals
Power consumption	ca. 1,8 W
Short term current input	1 A (while motor activity)
Control voltage	24 V DC (generated by DFA)
Control current	1 mA
Required trigger impulse length	min .60 ms
Output data	
Relay outputs	
Type of contacts (status indicator)	single pole non-floating NO micro gap
Rated voltage	24 V AC or DC
Rated current	1 A
Output for remote trip	generates adjustable residual current to trip RCCB by connecting crossover to L and N from RCCB
Semiconductor output	
Type of contact	small signal semiconductor, open collector
Rated current	50 mA by external pull-up resistor to 24 V
Housing	Polyamid, grey
Mounting	on rail (EN 50022) in distribution boards, 4 pitch
Degree of protection	IP 30 (after fitting in distribution board)
Terminals	screw types
Tightening torque	$0,5 \mathrm{Nm}$
Nominal cross-sectional area	$1 \times 2,5 \mathrm{~mm}^{2}$ rigid conductors, $1 \times 1,5 \mathrm{~mm}^{2}$ flexible conductors
Smallest possible conductor size	$0,4 \mathrm{~mm}$ in diameter
Control inputs	start making operation - start breaking operation - remote tripping test
Control outputs (relay)	- RCCB / MCB in closed position - RCCB / MCB in opened position - RCCB / MCB has tripped
Control outputs (semiconductor)	External operation indicator (e.g. LED)
Operation indicator	by LED
Further indicators	Status by different flashing frequencies of the operation LED
Actuators	rotary switch for mode: - on: device is only following control commands - auto: device follows control commands and resets automatically 15 s after tripping, up to 3 times - off: device doesn't accept control commands (e.g. while maintenance)
Ambient temperature	$-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Design requirements	IEC 60669
Approvals	none

DFA Page 66/67
Dimensions Page 116
Wiring diagram

Innovation a Tradition

Technical dafa
DHS 2
DHS 4

| Nu |
| :--- | :--- |
| Ra |
| R |
| U |
| R |
| Max |
| R |
| R |

Rated duty	continuous duty
Rated operational current I_{e}	nominal current
Utilization category	AC 22 A
Rated operational voltage U_{e}	$230 \mathrm{~V} / 400 \mathrm{~V}$
Max. operational voltage U_{i}	$\mathrm{U}_{\mathrm{n}}+10 \%$
Rated insulation voltage U_{i}	400 V
Rated frequency	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
Rated impulse withstand voltage $U_{i m p}$	4 kV
Rated short-time withstand voltage I_{cw}	$3 \times \mathrm{In}_{\mathrm{n}}$
Rad	

Rated short-circuit making capacity I_{cm}

Rated short-circuit current I_{nc}	10 kA			
Rated current In_{n}	63 A	80 A	100 A	125 A
Back-up fuse	100 A	100 A	125 A	125 A
Back-up fuse, short-circuit protection as per DIN VDE 0636	$100 \mathrm{~A} / \mathrm{gL}$		$125 \mathrm{~A} / \mathrm{gL}$	

Resistance to mechanical shock and impact

Resistance to mechanical vibration	$>5 \mathrm{~g}(\mathrm{f}<80 \mathrm{~Hz}$, duration $>30 \mathrm{~min})$
Ambient temperature	$-25^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
Climatic reliability	conforming to DIN IEC $60068-2-30:$ damp, heat cyclic $25^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C} ; 93 \% / 97 \%$ rel. hum., 28 cycles $)$
Positioning, direction of input	optional

Terminal cross-sections
Round wire, solid
$1 \times 1,5-50 \mathrm{~mm}^{2}$ (1-wire connect.) ; $2 \times 1,5-16 \mathrm{~mm}^{2}$ (2-wire connect.)
Stranded
Fine-stranded

Tightening torque of clamping screws	3 Nm	
Terminal cross-section		$50 \mathrm{~mm}^{2}$
Enclosure protection type	IP 40	
Mechanical endurance	> 10000 switching cycles	
Electrical endurance	> 1500 switching cycles	
Design requirements	DIN EN 60947-1	DIN EN 60947-3

Wiring diagram Page 121
Accessories

Further DIN-Rail Mounted Devices

Technical data DIS

Number of poles	1 to 4 poles
Rated current In	16 to 100 A
Rated short-circuit current Inc	25 kA with $100 \mathrm{~A} / \mathrm{gL}$ back-up fuse
Utilization category	AC 22
Rated voltage	$240 / 415 \mathrm{~V}$
Rated frequency	$50 / 60 \mathrm{~Hz}$
Switching capacity	$1,25 \times \mathrm{In} ; 1,1 \times \mathrm{Un}_{\mathrm{n}}$
Enclosure protection type	IP 40 (installed condition)
Terminal cross-section	max. $50 \mathrm{~mm}{ }^{2}$
Terminals	shock-hazard protection acc. to DIN VDE 0106 (VBG 4)
Disconnection	position switch with positive opening operation acc. to DIN VDE 0113

Technical data RWZ 1211.13

Rated voltage	
Rated current	
Rated freguency	
Power consumption	
Voltage working limit range	
Starting current with cos. φ	
Wiring of passive impulse-output	
Interface	
Pulse value	
Display	
Accuracy	
Installation	
Width of housing	
Limits of ambient temperature	
Max. relative air humidity	
Design requirements	

RWZ 1211.13
Dimensions
Wiring diagram

Page 74
Page 116
Page 123

Technical data

Rated voltage	$3 \times 230 / 400 \mathrm{~V} \mathrm{AC}$
Rated current	5 (65) A
Rated freguency	50 Hz with blocked inverse counting
Power consumption	approx. 0,6 W
Limits of voltage range each phase against neutral	184 V to 265 V
Starting current with cos. φ	= 1 = 1 typical 14 mA , harmonics considered until 7 kHz
Wiring of passive impulse-output interface	As per SO-conditions of DIN EN 62053-31 standards: 18 V to 27 V , max. 27 mA ; pulse length $\geq 30 \mathrm{~ms}$; + lead to terminal 20 (SO+), pulse signal out on terminal 21 (SO-)
Pulse interface	S0 according to DIN EN 62053-31
Pulse rate electrical	$\mathrm{RA}=1 \mathrm{~Wh} / \mathrm{Imp}$.
Pulse rate optical	Red LED; RL = $1 \mathrm{~Wh} /$ Imp. Red LED is showing continue light, as soon as power supply is connected without load and change to flashing synchronous $1 \mathrm{~Wh} / \operatorname{Imp} .=$ RL
Display	Drumtype register with 5 digits kWh plus 1 decimal digit
Accuracy	Class index 1, class index 2
Installation	For mounting on rail conforming to DIN EN 50022
Width of housing	90 mm
Limits of ambient temperature	$-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Max. relative air humidity	Average year value 75%, short time value 95%
Design requirements	EN 62052-11, CE and EN 62053-21, PTB-approval pending

RDZ 34.52.41
Dimensions Page 75

Wiring diagram

RDZ 34.52.41

As per SO-conditions of DIN 43864 standards:
18 V to 27 V , max. 27 mA ; Impulse length $\geq 30 \mathrm{~ms}$; + lead to terminal 20
SO-optical coupler (as per DIN 43864)
RA $=0,5$ or $1 \mathrm{~Wh} /$ Imp. (see meter)
5 digits for kWh and 1 decimal
Class 1
For mounting on rail conforming to DIN EN 50022
18 mm
$20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Average year value 75%, short time value 95%
IEC 1036, EN 61036, PTB-approval pending

Further DIN-Rail Mounted Devices

Technical data

Rated operating voltage U_{e}

	1-pole up to 110 V DC 2 -pole up to 220 V DC
Rated operating current le	63 A
Rated constant current lu	63 A
Overvoltage category / contamination level	IV / 3 (DIN VDE 0110)
Rated surge capacity Uimp	6000 V
Heat loss per current path at le	0,5 W
Connection	stainless steel - cage terminal
Tightening torque / screw type	max. $4 \mathrm{Nm} / \mathrm{M6}$ pozidriv
Fixed terminal cross-sections	min. 1,5 / max. $35 \mathrm{~mm}^{2}$
Rated short-circuit making capacity Icm	50 kA eff.
Switching category	$\begin{aligned} & \hline A C 22 B \\ & D C 21 B \\ & \hline \end{aligned}$
Specifications	DIN VDE 0660, 0636, 0638, 43880, EN 60947, IEC 60947-3, IEC 60269-3
Test mark	VDE
Number of poles	1-pole, 2-pole, 3-pole, 1-pole+N, 3-pole+N
Handling	without fuse-carrier plug-in system, similar to HRC
Suitable for fuses gL, gG, aM	$\begin{gathered} \text { DO } 1: 1^{*}, 2,4,6,10,16 \mathrm{~A} 1^{*}=\text { non-standard) } \\ \text { DO 2: } 20,25,35,50,63 \end{gathered}$
Ambient temperature	$-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Insulation components	plastic, free of halogen, phosphorus and silicone
Fire classification / creep resistance	UL 94 IVO, filament test $960^{\circ} \mathrm{C} / \mathrm{CTI} 600$
Enclosure protection / contact protection	IP 20 / finger and back of the hand protection

TYTAN II Relay Part -
Main Protection

Operating voltage range	$24-240 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{DC}$
Operating voltage folerance	$-10 /+10 \%$
Power consumption	5 W
Frequency	$50-60 \mathrm{~Hz}$
Operation indicator	1 LED
Mains	1 LED
Malfunction	100% continuous
Duty cycle	approx. 100 ms
Response delay	approx. 100 ms
Recovery time	2 change-over contacts 5 A $/ 250 \mathrm{~V}$
Relay contact	4000 V
Rated surge voltage resistance Uimp	reliable via opto-electrical flashing indicator
Special features	immediately via spare box
Fault indication	
Reconnection	

DO Master Disconnector Page 78-81
Dimensions Page 117
Accessories Page 82

DO Master Disconnector
400 V AC
1-pole up to 110 V DC
2-pole up to 220 V DC

IV / 3 (DIN VDE 0110)
stainless steel - cage terminal
max. $4 \mathrm{Nm} / \mathrm{M} 6$ pozidriv

50 kA eff.
AC 22 B
DC 21 B

VDE
1-pole, 2-pole, 3-pole, 1-pole + N, 3-pole + N
without fuse-carrier plug-in system, similar to HRC

$$
2: 20,25,35,50,63
$$

$-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
astic, free of halogen, phosphorus and silicone
UL 94 IVO, filament test $960^{\circ} \mathrm{C} / \mathrm{CTI} 600$
IP 20 / finger and back of the hand protection

Technical data RK 81 / 81 S / 12 / 12 S / 3 U / 24

Primary voltage	$230 / 240 \mathrm{~V} \sim$
Frequency	50 Hz
Duty cycle	Short time load 1 min.
Housing	grey RAL 7035
Approvals	EN 61558
Enclosure protection type	IP 40, currently IP 00, IP 20 (with protection cap)
Mounting	DIN-rail to EN 50022
Overload protection	PTC, primary side
Terminals	strain-relief clamps for $2 \times 1,5 \mathrm{~mm}^{2} ;$ $2 \times 2,5 \mathrm{~mm}^{2}$ or $1 \times 4 \mathrm{~mm}^{2}$

Note: With low loads, or when idling, higher output voltage!
To restart after a short-circuit temporarily disconnect primary side from the mains.
Dimensions Page 118

Wiring diagram

Further DIN-Rail Mounted Devices

Technical dafa

LT 500 M

Rated voltage	$230 \mathrm{~V} \pm 10 \% / 50 \mathrm{~Hz}$
Power consumption	max. 1 W
Output data	
Type of contact	power semiconductor
Rated voltage	230 V
Rated current	2,5 A
Making and breaking capacity (>100.000 operation cycles)	
Incandescent lamps	500 W
Fluorescent lamps	illegal
Mercury vapour lamps	illegal
Max. capacitor for parallel compensation	illegal
Mains voltage halogen lamps	500 W
Low voltage halogen lamps - with electronic transformers* - with ironcored transformers**	$\begin{aligned} & 500 \mathrm{~W} \\ & 500 \mathrm{~W} \end{aligned}$
Minimum load	10 W
Power dissipation at rated load	4,5 W
Overload protection	yes by electronics
Make delay	ca. 1 s from 0 \% to 100% (Softstart)
Break delay	ca. 1 s from 100% to 0% (Softstop)
Housing	Polycarbonat, grey 2 pitch
Mounting	on rail (EN 50022) in distribution boards
Position of normal use	vertikal, N upper side
Degree of protection	IP 40 (after fitting in distribution board)
Terminals	screw types
Tightening torque	$0,5 \mathrm{Nm}$
Nominal cross-sectional area	$1 \times 2,5 \mathrm{~mm}^{2}$ rigid conductors, $1 \times 1,5 \mathrm{~mm}^{2}$ flexible conductors
Smallest possible conductor size	$0,4 \mathrm{~mm}$ in diameter
Control inputs	none
On-Off indicator	by LED
Further indicators	by LED: 1 Hz flashing: internal temperature too high
Actuators	rotary button to adjust the lightness
Ambient temperature	$-10^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$ without derating
Design requirements	IEC 60669
Approvals	none

* With LV-halogen lamps it is necessary to allow for the transformer's own consumption in addition to the lamps' capacity when calculating the total power loss. This may be assumed to be approx. 10% of the lamps' capacity.
* *Conventional transformers for LV-halogen lamps should be loaded to at least 20%. If the inductance is too high, the dimmer will be switched off. Basically, only those transformers which have been specified by the manufacturer as being suitable for phase angle control dimmers should be used.

LT 500 M
Page 86
Dimensions
Page 118
Wiring diagram
Page 124

Technical data
 RUD 1
 RUD 2
 LT 500
 LT 1200

Rated voltage	
Power consumption	
Control voltage	
Control current	
Required trigger impulse lenght	

Output data

Type of contact	
Rated voltage	
Rated current	
Making and breaking capacity (>100.000 op	
Incandescent lamps Fluorescent lamps Mercury vapour lamps Max. capacitor for parallel compensation Mains voltage halogen lamps Low voltage halogen lamps - with electronic transformers* - with ironcored transformers* *	
Minimum load	
Power dissipation at rated load	
Overload protection	
Make delay	
Break delay	

	to 0 \% (softstop)			
Housing	Polycarbonat, grey 2 pitch	Polycarbonat, grey 1 pitch	Polycarbonat, grey 2 pitch	Polycarbonat, grey 4 pitch
Mounting	on rail (EN 50022) in distribution boards			
Position of normal use	vertical	arbitrary	vertikal, N upper side	
Degree of protection	IP 40 (after fitting in distribution board)			
Terminals	screw types			
Tightening torque	$0,5 \mathrm{Nm}$			
Nominal cross-sectional area	$1 \times 2,5 \mathrm{~mm}^{2}$ rigid conductors, $1 \times 1,5 \mathrm{~mm}^{2}$ flexible conductors			
Smallest possible conductor size	$0,4 \mathrm{~mm}$ in diameter			

Control inputs	
Lenght of control wires	
On-Off indicator	
Further indicators	
Actar	

Actuators	ro
	-re
Ambient temperature	
Desig	

A1: ON to memory value	S+ and S- for PDM from RUD 2

A2: ON to memory / OFF / DIMM
A3: OFF (e.g. central)
A4: ON to 100% lightness

$$
\frac{\text { max. } 100 \mathrm{~m}}{\text { by LED }}
$$

by LED: 1 Hz flashing: internal temperature too high

rotary switch for operation mode: - phase control - reverse phase control	none	rotary switch for operation mode: - phase control - reverse phase control
$-10^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$ without derating		
IEC 60669		
none		

RUD 1 / RUD 2
Page $85 / 86$

LT 500 / LT 1200
Dimensions

Page 87
Dimensions
Page 115/118
Page 125
Wiring diagram
Page 118
Wiring diagram
-

- Page 124

Further DIN-Rail Mounted Devices / Twilight Switches

Technical deta	NT 24-250	NT 24-1300
AC input voltage range	$195 \mathrm{~V}-265 \mathrm{~V}$	
Power consumption at rated load	7,5 W	40 W
Input frequency range	$48 \mathrm{~Hz}-62 \mathrm{~Hz}$	
Output data		
Output voltage	$24 \mathrm{VDC} \pm 2,5 \%$	
Output current	250 mA	1300 mA
Effiency	> 80%	
Ripple at rated load	$<200 \mathrm{mV}$ pp	
Capacativ loads	n.a.	$15000 \mu \mathrm{~F}$
Overload protection	fold-back characteristic with automatic restart	
Class of protection	III, SELV	
Dielectric strenght	4 kV output to input	
Housing	Polycarbonat, grey, 2 Pitch	Polycarbonat, grey, 4 Pitch
Mounting	on rail (EN 50022) in distribution boards	
Degree of protection	IP 40 (after fitting in distribution board)	
Terminals	screw types, $2 \times 24 \mathrm{VDC}, 0 \mathrm{~V}, 1 \times$ LIN, N	
Tightening torque	$0,5 \mathrm{Nm}$	
Nominal cross-sectional area	$1 \times 2,5 \mathrm{~mm}^{2}$ rigid conductors, $1 \times 1,5 \mathrm{~mm}^{2}$ flexible conductors	
Smallest possible conductor size	$0,4 \mathrm{~mm}$ in diameter	
Operating indicator	by LED	
Further indicators	overload by LED	
Ambient temperature	$-10^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$ without derating	
Design requirements	IEC 60950	
Approvals	none	

Technical data DASY 10 DASY 16

Rated voltage	$230 \mathrm{~V} \pm 10 \% / 50 \mathrm{~Hz}$	
Power consumption	1 W	
Output data		
Type of contact	single pole non-floating NO micro gap	additional triac in parallel to relaycontact
Rated voltage	230 V	
Rated current	10 A	16 A
Making and breaking capacity (>100.000 operation cycles)		
Incandescent lamps	2300 W	3700 W
Fluorescent lamps - uncompensatet or lead-lag ballast - parallel compensatet	$\begin{aligned} & 2300 \mathrm{VA} \\ & 2300 \mathrm{VA} \\ & \hline \end{aligned}$	$\begin{aligned} & 3700 \mathrm{VA} \\ & 3700 \mathrm{VA} \end{aligned}$
Mercury vapour lamps	2300 VA	3700 VA
Max. capacitor for parallel compensation	$70 \mu \mathrm{~F}$	$140 \mu \mathrm{~F}$
Power dissipation at rated load	2,5 W	
Overload protection	none	
Make delay	10 s	
Break delay	40 s	
Housing	impact resistant polycarbonat, white	
Mounting	wall surface	
Position of normal use	status indicator face down	
Cable entry glands	$1 \times$ top, $2 \times$ bottom, $1 \times$ back (PG16)	
Degree of protection	IP 54	
Terminals	screw types $1 \times$ LIN, LOUT, PE, $2 \times \mathrm{N}$	
Tightening torque	$0,5 \mathrm{Nm}$	
Nominal cross-sectional area	$1 \times 2,5 \mathrm{~mm}^{2}$ rigid conductors, $1 \times 1,5 \mathrm{~mm}^{2}$ flexible conductors	
Adjusting range	2 to 1000 lux	
On-Off indicator	by LED	
Ambient temperature	$-25^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$	
Design requirements	IEC 60669	
Approvals	SEMKO, NEMKO, DEMKO	

NT 24-250 / NT 24-1300
Page 88/89
DASY 10 / DASY 16
Page 92
Dimensions Page 118
Wiring diagram Page 125
Dimensions

Page 118
Wiring diagram
Page 123

Doepke

Dimensions

- DMD 1

Page 42

- DMD 2

Page 43

- DMD $2 E$

Page 44/45

- DMD 3 Type B Page 46/47

- FIB/FIC $1+$ N A.

Page 52/53

Doepke

Dimensions

- Hi 11 .. Page 54

Doepke

Dimensions

- Doorbell Transformer

Page 83

Doepke

Wiring diagrams

FIB/FIC $1+$ N A.

Page 52/53

- FIB/FIC $3+$ N A.

Page 52/53

- DHS 2

Page 70/71

- DHS 4.

Page 70/71

Doepke

Wiring diagrams

Doepke

Wiring diagrams

1. General Explanations regarding Residual Current Protective Devices (RCD)

1.1 Principle

Residual current operated protective devices (abbr. RCD) continuously establish the total of the momentary values of all currents flowing via the active conductors to an electrical installation operated by an earthed AC mains supply. According to Kirchhoff's first law, this total must always be zero. In the event of a short-to-earth due to defective insulation, such currents will not total zero, because - depending upon the fault resistance RF and the ground circuit resistance RA - a residual current, also called fault current, will not flow via the active conductors but return via the earth to the power supply. If the r.m.s. value of the residual current exceeds the rated residual operating current $I_{\Delta n}$ of the RCD, then the latter will trigger the disconnection of the installation from the power supply.
An auxiliary power source may be required for detecting and evaluating the residual current or, alternatively, it can be accomplished independently of auxiliary voltage.
1.2 Protection by automatic disconnection from the power supply in the event of indirect contact as per IEC 60364-4-41 (Fault Protection)
If, in the event of defective insulation, earthed conductive installation components that do not form part of the operating current system, e.g. housings of Protection Class 1 electrical equipment, carry a voltage in excess of the maximum permissible contact voltage ULperm, then the installation to be protected must be quickly disconnected from the power supply. Earthing such components with a sufficiently low earthing resistance RA can result in the contact voltage's ULperm driving a residual current, which causes an RCD to be tripped and thus the immediate disconnection of the installation from the power supply. In order for this to occur the residual current must exceed the rated residual operating current $I \Delta n$ of the RCD. Fig. 1 illustrates this principle.

RCD protection at indirect contact T-net

Fig. 1: Fault current circuit with correct residual current protection in a IT net

The maximum values for RA for the max. permissible contact voltages of 25 V and 50 V are listed in the columns of Table 1. The resistance data herein for applications to $-25^{\circ} \mathrm{C}$ are reduced by a factor of 0.8 compared to the data for $-5^{\circ} \mathrm{C}$, because at $-25^{\circ} \mathrm{C}$ the operating current I Δ of the RCD may be 25% above the rated residual operating current $I \Delta n$.

In view of this extended range of protection, many erection standards dictate that either an RCCB as per IEC 61008, or an RCBO as per IEC 61009 with I $\Delta \mathrm{n} \leq 0,03$ A must be provided when installing equipment in areas at particularly high risk of accident.
This applies e.g. to

- locations containing a bath or shower
(IEC 60364-7-701)

Rated res. op. current	$5^{\circ} \mathrm{C}$	$-5^{\circ} \mathrm{C}$		$-25^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$
$\mathrm{I} \Delta \mathrm{n}$	25 V	50 V		25 V	50 V
$0,01 \mathrm{~A}$	2500Ω	5000Ω		2000Ω	4000Ω
$0,03 \mathrm{~A}$	830Ω	1660Ω		660Ω	1330Ω
$0,10 \mathrm{~A}$	250Ω	500Ω		200Ω	400Ω
$0,30 \mathrm{~A}$	83Ω	166Ω		60Ω	130Ω
$0,50 \mathrm{~A}$	50Ω	100Ω		40Ω	80Ω

Table 1: Maximum permissible earthin resistance $R A$ as a function of the rated residual operating current $I_{\Delta n}$ and the touch voltage $U_{\text {Lperm }}$ at the minimum ambient temperatures of $-5^{\circ} \mathrm{C}$ and. $-25^{\circ} \mathrm{C}$ respectively.

1.3 Additional protection in the event of direct contact as per IEC 60364-4-41 (Protection of persons)

The additional protection necessary in the event of direct contact with a live (unearthed) component can be provided by employing highly sensitive RCDs with a rated residual operating current of $\mathrm{I}_{\mathrm{n}} \leq 30 \mathrm{~mA}$. Such additional protection is required if
-the insulation of shockproof equipment or of a lead is damaged,

- there is a break in the earth wire
-the earth wire and an active wire have been interchanged so that conductive, normally earthed components have been rendered live, or
a component which is live during normal operation is touched during repairs.
- caravans, boats and yachts, as well as power supply thereof at camping sites and berth (IEC 60364-7-721)
- temporary electrical installations for structures, amusement devices and booths at fairgrounds, amusement parks and circuses (IEC 60364-7-740).

Since, in the event of direct contact, the residual current will pass through the human body to earth, such additional protection should under no circumstances be regarded as a basic safety feature. It is rather an "emergency brake" in the above mentioned cases of electrical faults.
According to IEC 364-5-53 only RCDs as described in Section 1.5 may be used for this additional protection.

Residual Current Protective Devices (RCD)

RCD protection at direct contact

1.4 Fire protection

Even relatively insensitive RCCBs ($1 \Delta \mathrm{n} \leq 300 \mathrm{~mA}$) can provide effective protection against fires caused by earth leakage currents. In the case of residual currents $\leq 300 \mathrm{~mA}$, the electrical energy converted at the earth fault location is generally not sufficient to ignite standard flammable building materials. With higher residual currents an ignition might be possible on account of the energy released; however the RCCB will disconnect the power supply in less than 0.3 s , thereby limiting the electrical ignition energy to harmless levels.

1.5.1 RCDs for fault protection,

 protection of persons and fire protectionAccording to IEC 60364-5-53 (Selection and Erection of Electrical EquipmentIsolation, Switching and Control) the following RCDs can be employed for the above mentioned protection categories:

- Residual current operated circuit breakers conforming to IEC 61008-1 Abbreviation: RCCB (Residual Current operated Circuit Breaker without integral overcurrent protection)
- Combined residual current/miniature circuit breakers conforming to IEC- 61009-1 Abbreviation: RCBO (Residual Current operated Circuit Breaker with integral Overcurrent protection)
- Circuit breakers with residual current trip element conforming to
IEC 60947-2 Appendix B Abbreviation:
CBR (Circuit Breaker providing Residual current protection)
- Modular residual current devices, where the unit for residual current detection, residual current evaluation and the power circuit breaker (CBR) unit are housed in separate enclosures in conformance with IEC 60947-2 Appendix M Abbreviation: MRCD (Modular Residual Current protective Device)

RCD Type	Sensitivity to residual currents	Symbol
AC	Pure AC residual currents with limited harmonics component, i.e. sinuso- idal residual currents whose mean value over one cycle of the mains fre- quency equals zero.	\sim
A	Type AC residual currents and pulsating DC residual currents whose momentary value for at least a semi-cycle of the mains frequency is approximately zero $(<6 \mathrm{~mA})$	$\sim \sim$
B	Type A (i.e. also Type AC) residual currents as well as smooth DC resi- dual currents and AC residual currents with frequencies up to 1000 Hz	\sim

Table 2: Classification of residual current and RCDs according to its time-related course

2. Technical Features and Notes on Applications

2.1 Tripping behaviour of RCDs with different time-related shapes of the residual current

Only in the case of installations whose equipment consists exclusively of linear, or approximately linear, electrical components, i.e. those whose current flow is proportional to the voltage, can it be assumed that purely $A C$ residual currents with the frequency of the mains voltage will flow to earth in the event of a fault. These are components with resistive, inductive or capacitive behaviour. Equipment containing non-linear, passive or active electronic components, e.g. rectifier diodes, thyristors or transistors, can give rise to currents - even when subject to sinusoidal mains voltage which contain strong harmonics and/or whose mean value over one cycle of the mains frequency does not equal zero, i.e. which include a percentage of DC current.
Depending upon the type and circuitry of the employed electronic components, the time-related shape of these fault currents can thus deviate significantly from the ideal sinus curve with a mean value of zero. Therefore, in order to insure their detection, RCDs with differing technologies are necessary. The Technical Report IEC 60755 describes different types of RCD in respect of the curve run of the residual currents to which they must respond as shown in Table 2.

A summary (Fig. 3) of commonly used basic circuit layouts of equipment with non-linear components (in short electronic equipment, EE), and the assigning of the resulting types of residual currents, are listed e.g. in EN 50178.

Like the shape of the residual current curve, the base frequency will influence the response behaviour of the RCD. The operating current, and the operating times, will therefore only lie within the range of standardized values if the residual current frequency corresponds with the rated frequency of the RCD. For our standard devices this is 50 Hz . Special variants of our Type A and AC RCDs for frequencies of 16 to 400 Hz are available upon request.

Source: DIN VDE 0100-530; Appendix B
Fig. 3: Basic circuit diagram with load and residual current shapes

2.1.1 Application for Type AC and A RCDs

It follows, according to Section 2.1, that in the event of an earth fault Type AC RCDs will respond only within the prescribed limits if an approximately sinusoidal residual current is flowing, i.e. a current whose time-related mean value equals zero and which is not subject to
strong distortions. This is the case with resistive loads and components with inductive or capacitive characteristics. Therefore, in installations which are fitted exclusively with this type of equipment, Type AC RCDs are capable of providing adequate protection.
Modern loads however frequently contain, e.g. for power control purposes,
electronic components in circuit layouts as illustrated in Fig. 3. In the event of a short-to-earth these can cause non-sinusoidal residual currents as detailed in Fig. 3, lines 1-7, which will not be detected by Type AC RCDs.
Because of this limited protection level the installation of RCDs of Type AC has been prohibited in Germany and several other western European countries since 1986.
RCDs of Type A are now usually employed in their stead. Their function is based - as is the case with Type AC RCDs - exclusively on the induction principle. Accordingly they will therefore respond only to those residual currents that effect sufficient change of the magnetic flux in the transformer core. In order for this to occur, a residual current has to pulsate in such a manner that its momentary value equals, or approximately equals, zero over at least a semi-cycle of the mains frequency.
As is evident in Fig. 3, Type A RCDs provide adequate protection for the majority of all electronic equipment at single phase mains.

RCDs of Type A do not respond to smooth DC residual currents. Their design function of responding to Type A residual currents will in fact be disrupted by smooth DC residual currents arising at the same time. For this reason EN 50178 / VDE 0160 stipulates that any EE which could give rise to smooth DC residual currents may not under any circumstances be connected downstream of a Type A RCD.
As per EN 50178, in cases where an EE could cause smooth DC residual currents, i.e. where protection by a Type A RCD is no longer guaranteed, the manufacturer of the equipment is dutybound to point out this fact in the operating instructions.

2.1.2 Application of Type B RCDs

When equipment as per Lines 6 and 7 in Fig. 3 can give rise to a smooth residual current which is not detected by a Type A RCD, the manufacturer of the equipment must in compliance with EN 50178 point out the necessity of providing a Type B RCD. This applies mainly to power electronics equipment (EE) if

Residual Current Protective Devices (RCD)

these operate without being electrically isolated by three-phase earthed nets, such as e.g. frequency converters (FCs), larger uninterruptable power supplies, welding current inverters etc. This type of equipment normally outputs a voltage in the form of bipolar, pulse-width modulated rectangular pulses with clock frequencies of 1 kHz up to several tens of kilohertz. In the case of frequency converters, due to the inductivity of the connected motors, the resulting load current then has a sinusoidal shape with the desired, set motor frequency. However isolation faults are normally of an ohmic nature. The output voltage of a frequency converter therefore drives pulse-width modulated rectangular residual currents with the clock frequency.
It follows that, in order to provide comprehensive protection in such applications, an RCD must also respond to residual currents with the FCs clock frequency and its harmonics (3rd and 5th harmonics). However, the response thresholds, over the complete frequency range, may not exceed the maximum permissible values of a specific protection level (fault protection, fire protection or protection of persons). This fact is unfortunately not given sufficient attention in the currently applicable standards for Type B RCDs. In the German VDE Standard 0664-100 the details given are only for residual current detection up to 2 kHz , while the international Standard IEC 60755, and the forthcoming IEC 62423, demand sensitivity to residual currents only up to 1 kHz . For these upper frequencies, moreover, response thresholds of up to approx. 20 or 10 times of the rated residual operating current are permitted. Whereas, in order to provide e.g. fire protection, a response frequency range of at least 100 kHz with a max. response threshold of 0.3 A would really be required.
A serious problem, which frequently makes the use of RCDs more difficult, is posed by leakage currents of different frequencies which are continuously discharged to earth during operation, e.g. via anti-interference capacitors. When strong enough they can cause unwanted tripping of a Type B RCD if this is highly sensitive and able to
detect residual currents over a broad frequency range. By selecting the RCD according to its frequency response and by the rated residual operating current it is frequently possible to avoid unwanted response. It is recommended, however, that the appropriate equipment already be selected during the planning stage of the installation in order to ensure that the sum of the leakage currents does not exceed the RCD's lower response threshold and spurious operation is thus prevented.
To this end we specify in the catalogue texts of our range of RCDs with tripping characteristic B the course of the response current frequency for every type of device. For further details on RCDs with tripping characteristic B please refer to our separate information leaflets or the descriptions on our Internet website www.doepke.de.

2.1.3 RCDs with increased surge current resistance

Impulse-type overvoltages caused by switching operations or lightning can give rise to leakage current surges due to the equipment capacitance to earth, or the line capacitance, which may occasionally cause non-delay RCDs spuriously to respond. Critical in this respect is equipment which has a high capacitance to earth, either because of the large area of its live components or because it is equipped with anti-interference capacitors. The former loads include e.g. large numbers of fluorescent lamps (> 20 lamps per current path) with conventional ballast.
The latter type of loads include e.g. fluorescent lamps with electronic ballast, X-ray machines and computer equip ment. In order to ensure reliable operation without unwanted tripping in these particularly critical cases, we recommend using our RCDs with increased surge current resistance (for RCCBs - Type suffix KV).
Thanks to the special design of their residual current detection and evaluation unit, these devices are largely insensitive to residual current surges. Surge current resistance is normally tested with the standardized $8 / 20$ surge current in compliance with IEC60060-1.

This is measured by the peak value of the maximum surge current which is permitted to pass in either direction through the RCD - and via all current paths - without causing the device to respond.

The surge current resistance of our standard RCCB and RCBO models is > 200 A, while the increased surge current resistant versions with the type suffix KV are surge current resistant to over 3 kA (> 5 kA available upon request). All other RCDs (CBRs and MRCDs) as well as the RCMs are surge current resistant to > 3 kA .
For all RCDs the response time for normal sinusoidal residual currents is within the limits as stipulated in IEC 60755 for non-delayed response devices or, in the case of devices with selectable response times, can be set accordingly (see Fig. 6).

2.1.4 Selectivity

Selective RCDs will respond to a residual current's occurring only after a current flow lasting several cycles of the mains frequency. This delay permits selective disconnection e.g. if two RCCBs are connected in series. In other words, in the event of a fault it will only trigger the RCCB upstream of the section affected by the short to earth even in the case of high residual currents. Fig. 4 illustrates this principle.

Fig. 4: Series-connection of two residual current protection circuits

If a normal RCCB were used in place of RCCB 1, a residual current of $I \Delta>0.3 \mathrm{~A}$ in section b of the system would trip RCCB 1 as well as RCCB 3. It is solely the delay feature of the selective RCCB 1 which ensures that only RCCB 1 responds.

Fig. 5: Response times of a delayed and non-delayed (selective) RCCB type DFS as a function of the magnitude of the residual current.
The response delay time of both selective and normal RCCBs depends upon the strength and the form of the residual current. This is illustrated by the example shown in Fig. 5 of a normal RCCB with $I \Delta n=0,03 A$ and a selective $R C C B$ with $I \Delta n=0,3 A$.

Table 3 gives an overview of the selective combinations possible of RCDs of model ranges DFS 2/4 and DFL 8. The boxes for the permissible combinations detail the prerequisite for the staggering of the rated residual operating currents.

		Upstream RCD 1 ($\mathrm{I}_{\Delta \mathrm{l}}$)				
		DFS 2/4 S	DFL 8 Time setting I	DFL 8 Time setting II	DFL 8 Time setting III	DFL 8 Time setting IV
	DFS 2/4 S	$\begin{gathered} I_{\Delta \mathrm{n} 1}>I_{\Delta \mathrm{n} 2} \\ \text { (min. } 1 \\ \text { stage) } \\ \hline \end{gathered}$			$\mathrm{I} \Delta \mathrm{n} 1 \geq \mathrm{I} \mathrm{Vn}^{\prime}$	$\mathrm{I}_{\Delta \mathrm{n} 1} \geq \mathrm{I}_{\Delta \mathrm{n} 2}$
	DFL 8 non-delayed $\left(I_{\Delta n}=0,03\right)$ $(1 \Delta n=0,03)$			$\mathrm{I} \Delta \mathrm{n} 1 \geq \mathrm{I}_{\Delta \mathrm{n} 2}$	$\mathrm{I} \Delta \mathrm{n} 1 \geq \mathrm{I}_{\Delta \mathrm{n} 2}$	$\mathrm{I}_{\Delta \mathrm{n} 1} \geq I_{\Delta n 2}$
	DFL 8 Time setting I			$\mathrm{I} \Delta \mathrm{n} 1 \geq \mathrm{I} \Delta \mathrm{n} 2$	$\mathrm{I} \Delta \mathrm{n} 1 \geq \mathrm{I} \Delta \mathrm{n} 2$	$\mathrm{I} \Delta \mathrm{n} 1 \geq \mathrm{I} \Delta \mathrm{n} 2$
	DFL 8 Time setting II				$\mathrm{I}_{\Delta \mathrm{n}} 1 \geq \mathrm{I}_{\Delta \mathrm{n} 2}$	$\mathrm{I} \Delta \mathrm{n} 1 \geq I_{\Delta n 2}$
	DFL 8 Time setting III					$I \Delta n 1 \geq I_{\Delta n 2}$

Table 3: Combinations of RCDs of model ranges DFS 2/4 and DFL 8 and staggering of rated residual operating currents for selective response in series connection systems

Fig. 6: Total disconnection times for non-delayed and delayed RCCB Types DFS 2, DFS 4 and CBRs of model range DFL 8

2.2 Disconnection Times

Fig. 6 show the disconnection times of our RCCBs and CBRs as a function of a multiple of the rated residual operating current. From these it is possible to establish, for any desired residual current value, the disconnection times for devices of all residual operating current ratings.

2.3 Mains Voltage Dependence

A mains voltage-independent RCD, e.g. in the form of a classic residual current operated circuit breaker (RCCB), takes the energy required for responding exclusively from the earth residual current. An RCCB is thus still able to function if the mains voltage should drop, or if there is a break in the neutral wire. Even prolonged overvoltage caused by a fault in the mains will not effect its operation. Because of this high operational safety level, a residual current operated circuit breaker should always be chosen in preference to a mains vol-tage-dependent device. It is for this reason that, in the case of installations which are operated by technically untrained personnel, or which are not subject to regular maintenance by trained technicians, it is obligatory in some European countries that the basic protection measure "Protection by Automatic Disconnection of the Power Supply" as specified in IEC 60364-4-41 is implemented only by means of RCDs operating independent of auxiliary voltage.
Our residual current operated circuit breakers of model ranges DFS 2 and DFS 4 meet the requirement of being mains voltage-independent, as do the CBRs of model range DFL 8 , which are also equipped with an auxiliary volta-ge-independent residual current trip element.
Our AC-DC sensitive DFS 4B residual current operated circuit breakers and the CBRs of model range DFL 8 B are also considered as mains voltage-independent within the meaning of DIN EN Standard 61008-1 VDE 0664-10 as they react to Type A residual currents even in the event of mains voltage failure, i.e. when two phases plus neutral are disrupted. These devices require a very small auxiliary voltage of 30 VAC

Residual Current Protective Devices (RCD)

solely for tripping in response to smooth DC residual currents and residual currents whose frequency differs from that of the mains frequency. Even such auxiliary voltage is below the permissible touch voltage of 50 V for normal installations. The requirements of the standard for Type B RCCBs, VDE 0664-100, are thus more than fully met, with those of the future international Standard IEC 62423 being exceeded even further.

2.4 Ambient temperature range

The normal ambient temperature range for RCDs is specified in almost all international standards as $-5^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$ with short-term temperatures up to $40^{\circ} \mathrm{C}$ for 1 hr in 24 hrs . Our RCDs are generally designed for a lower temperature of $-25^{\circ} \mathrm{C}$. This feature is indicated on the nameplate by the $[-25$ symbol.
If these RCDs are to operate at temperatures below $-5^{\circ} \mathrm{C}$ they are permitted by all international standards to have a 25% higher tripping current. In order still to ensure tripping with a touch voltage of $<50 \mathrm{~V}$ or $<25 \mathrm{~V}$, the earthing resistance must be reduced to 80% when compared to usage up to $-5^{\circ} \mathrm{C}$.

2.5 Short circuit resistance

RCDs must be protected against short circuits and, should this seem possible, against overloads by means of suitable protective provisions. The data tables for our RCCBs inside of this catalog show the rated short circuit current in conjunction with the maximum permissible back-up fuse (according to IEC 60269). As may be seen there, our RCCBs are protected by a 63 A fuse against short circuit currents up to the rated short circuit current, i.e. in most cases the service fuse will already provide the necessary short circuit protection.

Please note that the short- circuit fuse does not automatically guarantee overload protection. An overload has to be excluded by suitable planning of the installation taking into consideration the simultaneity factors.

3. Installation Instructions

3.1 Mounting

The positioning of our RCDs is optional and, except for RCCBs and CBRs with tripping characteristic B, neither is the direction of input and load sides stipulated. 4-pole devices may also be employed for 2-pole and 3-pole operations. Here, however, attention should be paid to the power supply of the RCDs test circuit. The devices are mounted on a rail to DIN EN 50022.
Protection level IP 40, which is achieved by careful covering of the terminals, guarantees protection only against contact. Therefore, without the provision of an additional housing, the RCDs may only be used in dry, dustfree rooms. For use in rooms subject to occasional dampness, or in particularly dirty locations, we recommend providing additional housing of protection type IP 54.

3.2 Reset function

The switch mechanism of RCCBs in model ranges DFS 2 and DFS 4 provides a reset function. The position of the switch lever indicates whether the RCCB has been switched off manually (position O) or as the result of a fault (central position). In order to cancel the central positioning the switch needs first to be moved to position ' O ', only then can the RCCB be switched on again (see Fig. 7).

3.3 Connecting and testing

Pass all leads (including neutral) required for operating the installation through the RCCB. Check all leads for proper insulation to earth (test with an insulation meter). Earth all equipment which is to be protected. Before putting into service, check that not only the RCCB but also the entire protective circuit is functioning correctly (measure the earthing resistance and the maximum possible contact voltage for the residual current at the tripping limit of the RCCB). This should be carried out every 6 months in order to ensure trou-ble-free mechanical functioning of the RCCBs.

4. Marks of Quality

- the metal parts of the switch mechanism are made from stainless materials
all devices comply with the requirements of the RoHS guidelines-all used materials can be recycled
- all electrical data are repeatedly checked in extensive final tests and, having been assigned to every individual device, permanently filed.

Miniature Circuit Breakers

1.0 General Explanations regarding Miniature Circuit Breakers

Miniature circuit breakers are current limiting devices that extinguish electrical arcing, not at the crossover of the current, but already within a half-wave of mains frequency. The short circuit current is thus unable to increase to its full height as it is already curtailed while rising.
By means of a trip armature and by utilizing the magnetic current forces, the response time $\ddagger \mathrm{E}$ (break delay), i.e. the time from the start of the short circuit current until the contacts' opening, is kept extremely short. In the disconnection oscillogram the time $\mathrm{tE}=0.7 \mathrm{~ms}$. The fast contact opening time causes
the developing arc to be rapidly pulled apart, resulting in a steeply rising arc voltage and thereby forcing the arc into the arc extinguishing chamber by its own electrodynamic and thermodynamic forces. The full arc drop voltage $U B=340 \mathrm{~V}$ is already reached after 1.4 ms . The fast rising arc voltage acts like an additional impedance which effectively dampens the short circuit current and extinguishes it after just 4.3 ms , well before the natural crossover of the current.
Because of their strong current limiting ability, our miniature circuit breakers not only meet the requirements of the highest Current Limiting Class 3 as per EN 60898/IEC 898, but their actual integrals of energy flow are also significantly lower.

1.1 Reset function

In the case of model range DLS 5 the switch mechanism is provided with a reset function. After a cut-off the position of the lever will indicate whether this was caused by a fault (central, position +) or if it had been switched manually (position O).

To reset the switch it must first be moved into position ' O ', it can then be switched into position ' 1 ' (see illustration).

1.2 Tripping Characteristic of Model Ranges DLS 5... / FIB... / FIC...

Tripping caracteristic B
$I_{n}=6-8 \mathrm{~A}$
Tripping caracteristic C and $D \quad I_{n}=0,3-8 \mathrm{~A}$

Tripping caracteristic B, C and $D I_{n}=10-63 \mathrm{~A}$

Miniature Circuit Breakers (MCB)

1.3 Effect of ambient temperature
With multi-pole or closely positioned devices, depending upon the number of poles or devices, a correction coefficient for the no-tripping current must be taken into consideration according to the following table.

No. of Poles	Correction Coefficient
1	1
$2-3$	0,93
$4-5$	0,90
6	0,87

It should also be noted that the nonactuation current is effected by the ambient temperature. The figure of 1.13 In at a temperature of $30^{\circ} \mathrm{C}$ as given in the Standard EN 60898 increases with a drop in temperature and will decrease with rising ambient temperatures.

Non-actuation current as a multiple of the rated current In dependent on the ambient temperature

1.4 Heat Losses

Joule's heat per pole at I $=\ln$	
Type B / C / D 6 A	$1,60 \mathrm{~W}$
Type B / / D 10 A	$1,90 \mathrm{~W}$
Type B / C D 13 A	$1,95 \mathrm{~W}$
Type B / / D 16 A	$2,00 \mathrm{~W}$
Type B / C D 20 A	$2,40 \mathrm{~W}$
Type B / / D 25 A	$2,75 \mathrm{~W}$
Type B / C D 32 A	$2,85 \mathrm{~W}$
Type B / / D 40 A	$3,40 \mathrm{~W}$
Type B / C D 50 A	$3,55 \mathrm{~W}$
Type B / C D 63 A	$5,05 \mathrm{~W}$

1.5 Selectivity

Selective up to prospective short circuit current I $\mathrm{I}_{\mathrm{C}} / \mathrm{A}$			
Back-up fuse IEC 60269 gL	Types B u. C $<16 \mathrm{~A}$	Types B u. C $<25 \mathrm{~A}$	Types B u. C $<63 \mathrm{~A}$
25 A	1300	700	-
35 A	2500	1300	800
50 A	3000	2200	1300
63 A	4800	3800	2200
80 A	6500	5000	3200
100 A	8000	7000	4500
125 A	10000	10000	6500
160 A	10000	10000	10000

Doepke

DFS 4 A KV	16
DFS 4 A S	18
DFS 4 A V500	22
DFS 4 AC	15
DFS 4 AC FT	21
DFS 4 AC KV	17
DFS 4 AC S	19
DFS 4 B NK	24
DFS 4 B SK	26
DFS 4 B SK S	28
DHi 1	64
DHi 2	38
DHS 2	70
DHS 4	70
DIS	72
DLS 5 - B	58
DLS 5 - C	60
DMD 1	42
DMD 2	43
DMD 2 E	44
DMD 3	46
DMD P	48
DWP	49
F	Page
FAM 11	55
FIB	52
FIC	53
H	Page
Hi 11	54

