

Brochure
DC switching contactors, type GAF A compact contactor up to 1000 V DC

The GAF contactor range
 A compact and efficient way of DC switching

The new GAF range contactors are the latest addition to ABB's well established $A / A F$ range. This further extends our offering of contactors for DC switching at voltages up to 1000 V DC. The GAF contactors utilize all the well known features of the existing A / AF range such as modern and compact design. In addition all the benefits from the AF coil technology and reliability of a proven contactor design. These contactors are rated for DC-1 or DC general purpose applications according to IEC 1000 V DC or cULus 600 V DC. The new GAF contactors share the external dimensions of its corresponding standard AF contactor.

> The new GAF range, the world's first block contactors with ratings up to 2000 A for 1000 V DC

Features and benefits

Powerful

- 1000 V DC switching ratings (IEC).
- UL (508) rated up to 600 V DC.

Flexible

- Wide control voltage range (e.g. 100-250 V AC/DC) means less versions covering the entire range.
- PLC interface with 24 V DC / 10 mA for GAF/AF400...2050.
- Ideal for remote and fast operation.

Efficient

- The AF electronic coil interface reduces power consumption 5-10 times at holding compared to conventional contactors.

Reliable

- The GAF contactor is based on the well proven AF contactor.
- Less sensitive to voltage drops due to a drop-out voltage of 55% of the lower nominal value along with 20 ms sag and dip immunity. These features avoid the problems with contactor chattering and welding.
- Elimination of contact bounce and chattering allows for increased reliability and service life.

Quiet

- DC powered coil makes the contactor virtually noise free.

Easy

- The external dimensions of the GAF contactors are the same as corresponding AF contactors making it easy to order and install.
- Existing add on accessories for A/AF range of three pole contactors will fit the GAF contactors.

The GAF contactor's ability to break DC up to 2000 A at a voltage up to 1000 V derives from the use of permanent magnets in the arc packages. The magnets enable the contactor to extinguish the powerful electrical arcs that arise between the contact surfaces when breaking DC. Normal AF contactors can break DC up to some extent but since they lack the permanent magnets they will not be able to break DC as a corresponding GAF contactor.

Applications - solar

What is PV power?
Photovoltaic (PV) power is a renewable energy source converting sunlight directly into electrical energy using PV cells. Large PV systems often consist of following main components:

- PV cells (combined to strings, generating the power).
- Inverter (one or several, converting the generated DC voltage into AC 50 Hz or 60 Hz , also including devices for switching, protection and control).
- Combiners (junction boxes, including switching devices, with several cables on input and one cable on output).
- Trackers (mechanical structure to move the angle of PV cells to follow the sun, increasing system efficiency, also including motors, PLC, communication, protection).
- Switching devices and protection devices (to change PV string configuration, protect from over currents, surge voltages and earth faults etc.).
- Distribution transformer (transforming low voltage to high voltage, as grid connection often is done on high voltage level).

What is the future of PV power?
Solar energy is today the fastest growing segment in renewable energy and is believed to be one of the major energy sources in the future.

Factors that vouch for a bright future of solar energy:

- Growing climate awareness brings more focus on renewable energy.
- Continuously higher legislative demands on increasing the share of green energy.
- Intense research and development of the PV technology in order to make it more efficient and easier to produce.

Decreased production costs due to higher volumes and improved production technique make it possible to produce low cost PV cells which in turn will expand the market.

Why is DC contactors needed?
PV plants contain some major application for DC switching, since the electricity produced by the PV panels is DC. Depending on application requirements, different products can be used for switching. Contactors are typically selected for applications with the need for remote control and switching at least once per day.

Applications

Main applications where contactors are used for DC switching are:

- Disconnection of the inverter from the PV strings when the output is too low.
- Changing the string configuration, e.g. to increase plant efficiency by diverting one or several PV strings to an optimal number of converters at low output. This makes it possible to constantly optimize the efficiency of the system.

Applications - other

There are several other DC-applications in which ABB's GAF \& AF contactors can be efficiently used.

Traction
Traction vehicles

- Urban traction vehicles such as trams, subways, commuter trains etc.
- Diesel locomotives
- Heating applications

Traction wayside

- Signaling
- Switchgear
- Power distribution

Batteries

The accelerating need for mobile energy and protection against power disturbances in distribution networks is driving the market of batteries forward. The number of applications where batteries
can be used is steadily increasing and with that the need of DC switching. Examples of such applications are charging of vehicle batteries, DC storage, UPS installations, backup and control solutions, etc.

Telecom
The telecom industry is today facing a rapid increase of data transmission which demands larger and more efficient transmission stations. Larger stations may require higher currents and an increase of voltage in order to reduce energy losses. In this kind of setup compact, efficient and reliable DC switching is needed.

Special industry:

- DC Drives in e.g. metal refining plants.

Ordering details
 DC switching ratings， 3 contacts in series

GAF1650，GAF 2050 AF1350 ．．．AF2050

LP2050

IEC rated operational current at 1000 V

L／R1 ms，air temperature close to contactor					Type	Order code	Pkg	Weight
$40^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$				
A								
275	250	230	205	180	GAF185－10－11	1SFL497025R■口11		3.60
500	400	375	350	325	GAF300－10－11	1SFL557025Rロ口11		6.20
700	600	560	520	480	GAF460－10－11	1SFL597025R■ $\square 11$		12.00
1050	875	800	760	720	GAF750－10－11	1SFL637025Rロ口11		15.00
1250	1040	970	920	875	GAF1250－10－11	1SFL647025Rロ口11		16.00
1650	1450	1380	1325	1270	GAF1650－10－11	1SFL677025Rロ11		35.00
2050	1750	1650	1575	1500	GAF2050－10－11	1SFL707025Rロ口11		35.00

cULus general purpose ratings at 600 V and IEC rated operational current at max． 850 V

$40^{\circ} \mathrm{C} \quad$ UL	$40^{\circ} \mathrm{C} \quad$ IEC			
A	A			
250	275	GAF185－10－11	1SFL497025RD11	3.60
400	500	GAF300－10－11	1SFL557025RD11	6.20
Use GAF185 ．．．GAF300	See next page for IEC data at different voltages．	AF145－30－11	1SFL477001RD11	3.60
		AF185－30－11	1SFL497001R［D11	3.60
		AF210－30－11	1SFL517001RD11	6.20
		AF260－30－11	1SFL537001RD11	6.20
		AF300－30－11	1SFL557001R［D11	6.20
550		AF400－30－11	1SFL577001R［D11	12.00
650		AF460－30－11	1SFL597001RD11	12.00
750		AF580－30－11	1SFL617001R［D11	15.00
900		AF750－30－11	1SFL637001RD11	15.00
1210		AF1250－30－11	1SFL647001RD11	16.00
－		AF1350－30－11	1SFL657001R［D11	34.00
1350		AF1650－30－11	1SFL677001RD11	35.00
1900		AF2050－30－11	1SFL707001R［D11	35.00

Connection bar for contactor＊

| GAF185，AF145，AF185 | LP185 | 1SFN074712R1000 | 2 | 0.30 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| GAF300，AF210 ．．．AF300 | LP300 | 1SFN075112R1000 | 2 | 0.40 |
| GAF460，AF400，AF460 | LP460 | 1SFN075712R1000 | 4 | 0.55 |
| GAF750，AF580，AF750 | LP750 | 1SFN076112R1000 | 4 | 0.95 |
| GAF1250，AF1250 | LP1250 | 1SFN076412R1000 | 2 | 1.90 |
| GAF1650，GAF2050，AF1350，AF1650，AF2050 | LP2050 | 1SFN076512R1000 | 4 | 2.90 |

${ }^{*}$ ）Not included with the contactor
Auxiliary contact blocks，low energy microswitch $0.1 \mathrm{~A}, \mathrm{~N} . \mathrm{O}$ or N．C．

AF145．．．AF2050	N．C．	CEL18－01	1SFN010716R1001		0.05
GAF185．．．GAF2050	N．O．	CEL18－10	1SFN010716R1010		0.05

AC／DC coils with electronic coil interface

Contactors GAF185 ．．．GAF300，AF145 ．．．AF300				
Voltage L．．」	V－50／60Hz	Voltage$V-D C$	Code	
			\square	\square
－		$20 . . .60$	7	2
48 ．．． 130		48 ．．． 130	6	9
100．．． 250		$100 . .250$	7	0

Contactors GAF1650，GAF2050，
AF1350，AF1650，AF2050
$100 \ldots 250$

Utilization category DC-1		AF145	AF185	AF210	AF260	AF300	AF400	AF460	AF580	AF750	AF1250	AF1350	AF1650	AF2050
		A	A	A	A	A	A	A	A	A	A	A	A	A
Contacts in series	L/R1 ms													
1 contact	110 V						600	700	800	1050				
2 contacts	110 V	250	275	350	400	450	600	700	800	1050				
3 contacts	220 V	250	275	350	400	450	600	700	800	1050	1250	1350	1650	2050
3 contacts	600 V						600	700	800	1050	1250	1350	1650	2050
3 contacts	850 V								800	1050	1250	1350	1650	2050
Conductor cross-sectional area	mm^{2}	120	150	185	240	$300{ }^{1)}$	370		30	800^{3}	$1000^{3}{ }^{\text {(}}$	$1000{ }^{2)}$	$1500^{2)}$	$2000^{2)}$

Utilization category DC-3

Contacts in series	L/R 2 ms													
1 contact	110 V						600	700	800	1050				
2 contacts	110 V	250	275	350	400	450	600	700	800	1050				
3 contacts	220 V	250	275	350	400	450	600	700	800	1050				
3 contacts	600 V						600	700	800	1050				
Conductor cross-sectional area	mm^{2}	120	150	185	240	3001)	370			800^{3}	$1000{ }^{3}$	1000²)	$1500^{2)}$	$2000{ }^{2)}$

Utilization category DC-5

Contacts in series	L/R 7.5 ms													
1 contact	110 V						600	700	800	1050				
2 contacts	110 V	250	275	350	400	450	600	700	800	1050				
3 contacts	220 V	250	275	350	400	450	600	700	800	1050				
3 contacts	600 V						600	700	800	1050				
Conductor cross-sectional area	mm^{2}	120	150	185	240	$300^{1)}$	370			$800^{3)}$	$1000^{3)}$	1000^{21}	$1500^{2)}$	$2000^{2)}$

${ }^{1)}$ For currents above 450 A use $300 \mathrm{~mm}^{2}$ and terminal extension / enlargement pieces (LW300: see www.abb.com/lowvoltage or local ABB catalog)
${ }^{2}$) Max connection bar width 100 mm
${ }^{\text {3) }}$ Max connection bar width 50 mm
cULus

		AF145	AF185	AF210	AF260	AF300	AF400	AF460	AF580	AF750	AF1250	AF1350	AF1650	AF2050
Intended device application general purpose														
Contacts in series														
3 contacts	240 V		250				550	650	750	900	1210		1350	1900
3 contacts	600 V						550	650	750	900	1210		1350	1900

General

- When selecting a contactor for DC switching it is essential to determine the current, the voltage and the L/R time constant of the controlled load.
- The loads are defined by the time constant L / R : non inductive loads such as resistance furnaces ($L / R \approx 1 \mathrm{~ms}$), inductive loads such as shunt motors ($L / R \approx 2 \mathrm{~ms}$) or series motors ($L / R \approx 7.5 \mathrm{~ms}$).
- In addition to the block contactors shown in this document:

1) ABB also offers bar mounted contactors (R-series). Bar contactors can typically be used for higher amps and voltages or other configurations or number of main poles (contacts).
2) For other DC swtiching contactors e.g. GA/GAE75 see catalog 1SBC100122C0202.

Technical data

DC contactors GAF and AF

Main Technical data

IEC60947-4-1
Contactor type GAF

Rated operational voltage $\mathrm{U}_{\mathrm{e}} \mathrm{max}$	V DC	1000						
IEC 60947-4-1, DC-1, $\theta \leq 40^{\circ} \mathrm{C}$	A	275	500	700	1050	1250	1650	2050
Conductor cross-sectional area	mm^{2}	150	3001)	480	800^{3}	$1000{ }^{3}$	1500 ${ }^{\text {2 }}$	2000 ${ }^{2}$

1) For currents above 450 A use $300 \mathrm{~mm}^{2}$ and terminal extension / enlargement pieces (LW300: see www.abb.com/lowvoltage or local ABB catalog)
${ }^{2}$ Max connection bar width 100 mm
${ }^{3}$) Max connection bar width 50 mm
cULus

Contactor type GAF		GAF185		GAF300	
Rated operational voltage $U_{e} \max$	V DC			600	
Amp-ratings general purpose	A		250		400

General Technical data

Contactor type		AF145	GAF185 AF185	AF210	AF260	$\begin{aligned} & \text { GAF300 } \\ & \text { AF300 } \end{aligned}$	AF400	$\begin{aligned} & \text { GAF460 } \\ & \text { AF460 } \end{aligned}$	AF580	$\begin{aligned} & \text { GAF750 } \\ & \text { AF750 } \end{aligned}$	$\begin{aligned} & \text { GAF1250 } \\ & \text { AF1250 } \end{aligned}$	GAF1650 AF1350 AF1650	$\begin{aligned} & \text { GAF2050 } \\ & \text { AF2050 } \end{aligned}$
Rated making capacity DC-1		$1.5 \times \mathrm{I}_{\mathrm{e}}$ acc. to IEC60947-4-1											
Rated breaking capacity DC-1													
Short-circuit protection for contactors without thermal O / L relay Motor protection excluded		On request or see www.abb.com/lowvoltage or local ABB catalog											
Rated short-time withstand current, I_{cw}		On request or see www.abb.com/lowvoltage or local ABB catalog											
Heat dissipation per pole I $/$ /DC-1	W	13	16	18	25	32	30	42	32	50	80	80	125
Rated impulse withstand voltage, $\mathrm{U}_{\text {imp }}$	kV	8											
Ambient temperature close to contactor		see "Conditions for use", for control voltage limits and authorized mounting											
- during operation / storage	${ }^{\circ} \mathrm{C}$	-40 to +70											
Operating altitude	m	≤ 3000 without derating											

Magnet system caracteristics

Mounting characteristics	- mounting on a vertical plane: any position with a tilt up to $\pm 30^{\circ}$	
Mounting positions	- mounting on a horizontal plane: any position with a tilt up to $\pm 30^{\circ}$, except up-side down	
Fixing	$4 \times \mathrm{M} 5$	$4 \times \mathrm{M} 6$
- by screws (not supplied)		$4 \times \mathrm{M} 8$

Connections

Recommended connection
All three contacts connected in series without the load in between. This connection is recommended in systems according to the configurations below.

Alternative connection

The load is placed in between the three contacts in an indirect earhted system or in a fully isolated system. If not connected according to the configuration below, a fault to earth could result in one or two contacts breaking the full load which the contactor is not approved for.

Points to consider

- The above relates to power circuit switching. The SCPD (Short Circuit Protection Device) must comply with applicable protection rules.
- The direction of the current must be as shown on the contactor front label.
- Connection bars for connecting three contacts in series are not delivered with the contactor as standard, but are available as accessories.
- Recommended and Alternative connection is also valid for DC-switching with AF contactors.

GAF185
AF145, AF185

GAF300
AF210 ... AF300

Contact us

ABB AB
©Copyright 2012, All rights reserved.
Cewe-Control
Specification sublject to change without notice.
SE-721 61 VÄSTERÅS, Sweden
Telephone +46 21320700
www.abb.com/lowvoltage

